Skip to main content
Log in

Nanoclusters and nanoscale voids as possible sources of increasing dark current in high-gradient vacuum breakdown

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The potential barrier model considering an additional current that can lead to the high-gradient breakdowns in accelerating structures is proposed. An oscillatory resonance feature of the field emission current from a double-layer metal system with a nanoscale coating is shown. The double potential barrier was used for calculations of the field emission current density value. The presence of resonant properties of the field emission current density of a double-layer metal system with a nanometric coating is revealed. The field emission current increasing more than 5 times (for the constant value of an electric field strength \(E=5 ~GV/m\)) when considering not ideal copper surface with the presence of nanoclusters on the surface of or nanoscale voids in the near-surface layer is observed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article].

References

  1. R.H. Fowler, L. Nordheim, Proc. Roy. Soc. A 119, 173 (1928)

    ADS  Google Scholar 

  2. A. Kyritsakis, M. Veske, K. Eimre, V. Zadin, F. Djurabekova, J. Phys. D: Appl. Phys. 51, 22 (2018)

    Article  Google Scholar 

  3. C. Nicholas, Shipman, in Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC (University of Manchester, Manchester, 2014)

    Google Scholar 

  4. N. Shipman, I. Profatilova, A.T. Perez Fontenla, W. Wuensch, S. Calatroni, CLIC - Note 1078, 1 (2017)

  5. N. Egorov, E. Sheshin, Field Emission Electronics Springer Series in Advanced Microelectronics. (Springer, Berlin, 2017)

  6. G.N. Fursey, in Field emission (Publishing House “Lan”, St. Petersburg, 2012)

  7. G.A. Mesyats, Explosive Electron Emission (Publishing House of Physical and Mathematical Literature, Moscow, 2011)

    Google Scholar 

  8. G.G. Vladimirov, in Physical Electronics. Emission and Interaction Particles with a Solid (Publishing House “Lan”, St. Petersburg, 2013)

  9. M.I. Elinson, G.F. Vasiliev, Autoelectronic emission (Publishing House of Physical and Mathematical Literature, Moscow, 1958)

    Google Scholar 

  10. V.A. Baturin, AYu. Karpenko, V.E. Storizhko, V.A. Shutko, Probl. At. Sci. Tech. 116, 4 (2018)

    Google Scholar 

  11. I.I. Musiienko, R.I. Kholodov, Probl. At. Sci. Tech. 121, 3 (2019)

    Google Scholar 

  12. I.I. Musiienko, R.I. Kholodov, J. Nano- Electron. Phys. 11, 3 (2019)

    Article  Google Scholar 

  13. S.O. Lebedynskyi, V.I. Miroshnichenko, R.I. Kholodov, V.A. Baturin, Probl. At. Sci. Tech. 98, 4 (2015)

    Google Scholar 

  14. S. Lebedynskyi, O. Karpenko, R. Kholodov, V. Baturin, I.A. Profatilova, N. Shipman, W. Wuensch, Nucl. Instrum. Methods Phys. Res. A 908, 318 (2018)

    Article  ADS  Google Scholar 

  15. S.O. Lebedynskyi, O.O. Pasko, R.I. Kholodov, J. Nano- Electron. Phys. 11, 2 (2019)

    Article  Google Scholar 

  16. S. Lebedynskyi, R. Kholodov, Eur. Phys. J. D 73, 190 (2019)

    Article  ADS  Google Scholar 

  17. M.A. Polyakov, G.N. Fursey, J. Commun. Technol. Electron. 63, 239 (2018)

    Article  Google Scholar 

  18. O.E. Raichev, Phys. Rev. B 73, 195328 (2006)

    Article  ADS  Google Scholar 

  19. A.A. Zakhidov, A.N. Obraztsov, A.P. Volkov, D.A. Lyashenko, JETP 100, 89 (2005)

    Article  ADS  Google Scholar 

  20. W. Wuensch, in 8th International Workshop on Mechanisms of Vacuum Arcs (MeVArc 2019), Padova, 2019, Field Emission - Modeling and Simulations, 85

  21. G.S. Landsberg, in Elementary textbook on physics: In three volumes, vol. 3 (Atomic and Nuclear Physics (Mir Publishers, Moscow, Oscillations and waves. Optics, 1989)

  22. J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A.A.R. Watt, G. Wakefield, A.C.S. Appl, Mater. Interfaces 4, 854 (2012)

    Article  Google Scholar 

  23. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Energy Environ. Sci. 4, 3779 (2011)

    Article  Google Scholar 

  24. P. Harrison, Quantum wells, wires, and dots: theoretical and computational physics of semiconductor nanostructures (Wiley, UK, 2005)

    Book  Google Scholar 

  25. A.S. Abdalla, M.H. Eisa, R. Alhathlool, O. Aldaghri, Optik 170, 314 (2018)

    Article  ADS  Google Scholar 

  26. J.M. Mohaidat, K. Shum, R.R. Alfano, Phys. Rev. B Condens. Matter 48, 8809 (1993)

    Article  ADS  Google Scholar 

  27. Z. Xiao, D. Shi-sen, Z. Chun-Xi, arXiv preprint arXiv: 1210.0970v2, (2012)

  28. H.H. Hosack, J. Appl. Phys. 36, 1281 (1965)

    Article  ADS  Google Scholar 

  29. Y. Zhou, P. Zhang, Phys. Rev. Res. 2, 043439 (2020)

    Article  Google Scholar 

  30. N.V. Egorov, L.I. Antonova, AYu. Antonov, J. Surf. Invest. 6, 906 (2012)

    Article  Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, Quantum mechanics non-relativistic theory, vol. 3, 3rd edn. (Butterworth-Heinemann, Oxford, 1991)

    MATH  Google Scholar 

Download references

Acknowledgements

The publication is based on the research provided by the grant support of the National Academy of Sciences of Ukraine (NASU) for research laboratories/groups of young scientists of the National Academy of Sciences of Ukraine to research priority areas of development of science and technology in 2021–2022 under contract No 16/01-2021 (3). The authors thank O.P. Novak for helpful discussions on the paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to I. I. Musiienko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musiienko, I.I., Lebedynskyi, S.O. & Kholodov, R.I. Nanoclusters and nanoscale voids as possible sources of increasing dark current in high-gradient vacuum breakdown. Eur. Phys. J. D 76, 68 (2022). https://doi.org/10.1140/epjd/s10053-022-00394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00394-7

Navigation