Skip to main content
Log in

Optimization of porous silicon structure as antireflective material

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The porous silicon structures can effectively trap light by virtue of the large number of pore on its surface. Therefore, it is widely used in the fields of optical applications such as photoelectric conversion, photon collection and detection. A microporous silicon with an ultra-high antireflection performance was fabricated by using electrochemical etching based on the inrush current model. The results show that the porous silicon structure had a smaller pore size range, and the reflectivity of the porous silicon was reduced to 2.27% under light radiation with a wave length of 300–1000 nm. The surface reflectivity of porous silicon structure with different pore diameters and different aspect ratios was investigated by using the finite-difference time-domain method to reveal the antireflective mechanism. The porous silicon structure with high surface quality, high pore integrity, pore diameter distribution of 300–700 nm and the aspect ratio of the pore exceeds 4 was found to be beneficial in achieving lower reflectivity in the range of incident light wavelength from 300 to 1000 nm, which is useful for designing porous silicon antireflective material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: Details of all experiments have been stated in the experimental section and all data have been presented in the paper figures. If you need first-hand data from us, you can contact the corresponding author.]

References

  1. H.R. Philipp, E.A. Taft, Phys. Rev. 120(1), 37 (1960)

    Article  ADS  Google Scholar 

  2. D.H. Shin, J.M. Kim, C.W. Jang, J.H. Kim, S. Kim, S.H. Choi, J. Appl. Phys. 123(12), 7 (2018)

    Article  Google Scholar 

  3. M. Rajabi, R.S. Dariani, J. Porous Mat. 16(5), 513 (2009)

    Article  Google Scholar 

  4. A. Srivastava, D. Sharma, P. Kumari, M. Dutta, S.K. Srivastava, A.C.S. Appl, Energ. Mater. 4, 4181 (2021)

    Google Scholar 

  5. P. Cano, M. Hinojosa, I. Garcia, R. Beanland, D.F. Marron, C.M. Ruiz, A. Johnson, I. Rey-Stolle, Sol. Energy 230, 925 (2021)

    Article  ADS  Google Scholar 

  6. Z.X. Zhang, Y.H. Wang, P.A.S. Hansen, K. Du, K.R. Gustavsen, G.H. Liu, F. Karlsen, O. Nilsen, C.Y. Xue, K.Y. Wang, Nano Energy 65, 8 (2019)

    Google Scholar 

  7. I.A. Iwe, E.A. Gosteva, V.V. Starkov, D.M. Sedlovets, O. Mong, ES Mater. Manuf. 3, 47 (2019)

    Google Scholar 

  8. X.C. Wang, Q.R. Liu, J.H. Shu, D.D. Ouyang, X.M. Zhang, J.M. Chen, H.G. Zhou, Y.Y. Zhang, J.M. Kong, Silicon (2021) (published online).

  9. A. Harizi, F. Laatar, H. Ezzaouia, Results Phys. 12, 1716 (2019)

    Article  ADS  Google Scholar 

  10. A. Uhlir Jr., Bell Syst. Tech. J. 35(2), 333 (1956)

    Article  Google Scholar 

  11. P. Sundarapura, X.M. Zhang, R. Yogai, K. Murakami, A. Fave, M. Ihara, Nanomaterials 11(2), 14 (2021)

    Article  Google Scholar 

  12. R.A. Ismail, R.G. Kadhim, W.M. Abdulridha, Optik 127(19), 8144 (2016)

    Article  ADS  Google Scholar 

  13. T.H. Pei, S. Thiyagu, Z. Pei, Appl. Phys. Lett. 99(15), 3 (2011)

    Article  Google Scholar 

  14. D. Kumar, S.K. Srivastava, P.K. Singh, M. Husain, V. Kumar, Sol. Energy Mater. Sol. Cells 95(1), 215 (2011)

    Article  Google Scholar 

  15. I. Kim, D.S. Jeong, W.S. Lee, W.M. Kim, T.-S. Lee, D.-K. Lee, J.-H. Song, J.-K. Kim, K.-S. Lee, Opt. Expr. 22(21), A1431 (2014)

    Article  Google Scholar 

  16. S.H. Zhong, W.J. Wang, Y.F. Zhuang, Z.G. Huang, W.Z. Shen, Adv. Funct. Mater. 26(26), 4768 (2016)

    Article  Google Scholar 

  17. S. Jeong, M.D. McGehee, Y. Cui, Nat. Commun. 4, 7 (2013)

    Google Scholar 

  18. X.C. Wang, Q.R. Liu, J.H. Shu, D.D. Ouyang, X.M. Zhang, J.M. Chen, H.G. Zhou, Y.Y. Zhang, J.M. Kong, Silicon (2021) (online published).

  19. Q.G. Du, C.H. Kam, H.V. Demir, H.Y. Yu, X.W. Sun, Opt. Lett. 36(9), 1713 (2011)

    Article  ADS  Google Scholar 

  20. M. Lipinski, S. Bastide, P. Panek, C. Levy-Clement, Physica Status Solidi a-Applied Research 197(2), 512 (2003)

    Article  ADS  Google Scholar 

  21. F. Wang, H.Y. Yu, X.C. Wang, J.S. Li, X.W. Sun, M.F. Yang, S.M. Wong, H.Y. Zheng, J. Appl. Phys. 108(2), 3 (2010)

    Google Scholar 

  22. B. Mohamed, H. Anouar, B. Brahim, Sol. Energy 86(5), 1411 (2012)

    Article  ADS  Google Scholar 

  23. J. Carstensen, M. Christophersen, H. Föll, Mater. Sci. Eng. B 69, 23–28 (2000)

    Article  Google Scholar 

  24. O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Rep. 38(1–3), 1 (2000)

    Article  ADS  Google Scholar 

  25. M. Treideris, V. Bukauskas, A. Reza, I. Simkiene, A. Setkus, A. Maneikis, V. Strazdiene, Mater. Sci.-Medzg. 21(1), 3 (2015)

    Google Scholar 

  26. P.Q. Wang, I.M. Peters, J. Appl. Phys. 119(8), 9 (2016)

    Google Scholar 

  27. X. Fang, M.H. Lou, H. Bao, C.Y. Zhao, J. Quant. Spectrosc. Radiat. Transf. 158, 145 (2015)

    Article  ADS  Google Scholar 

  28. W.J. Aziz, A. Ramizy, K. Ibrahim, Z. Hassan, K. Omar, Optik 122(16), 1462 (2011)

    Article  ADS  Google Scholar 

  29. A. Mondal, S. Bandyopadhyay, A.K. Mondal, S. Chatterjee, Ieee Journal of Photovoltaics 9(4), 951 (2019)

    Article  Google Scholar 

  30. J. Kwon, S. Lee, B. Ju, J. Appl. Phys. 101, 3636 (2007)

    Google Scholar 

  31. H. Foll, M. Christophersen, J. Carstensen, G. Hasse, Mater. Sci. Eng. R-Rep. 39(4), 93 (2002)

    Article  Google Scholar 

  32. S. Lust, C. Levy-Clement, Phys. Status Solidi A-Appl. Res. 182(1), 17 (2000)

    Article  ADS  Google Scholar 

  33. M. Christophersen, J. Carstensen, K. Voigt, H. Foll, Phys. Status Solidi A-Appl. Mat. 197(1), 34 (2003)

    Article  ADS  Google Scholar 

  34. D.H. Ge, W.B. Li, L. Le, J.X. Wei, X.K. Huang, L.Q. Zhang, P.J. Reece, S. Zhu, J.J. Gooding, Mater. Res. Lett. 6(12), 668 (2018)

    Article  Google Scholar 

  35. S.J. Ma, S. Liu, Q.W. Xu, J.W. Xu, R.G. Lu, Y. Liu, Z.Y. Zhong, AIP Adv. 8(3), 8 (2018)

    Google Scholar 

  36. W.R. Zhu, F.J. Xiao, I.D. Rukhlenko, J.P. Geng, X.L. Liang, M. Premaratne, R.H. Jin, Opt. Expr. 25(5), 5781 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by grants from Natural Science Foundation of Jiangsu Province (BK20180098), National Laboratory of Solid State Microstructures, Nanjing University (M32045, M33042).

Author information

Authors and Affiliations

Authors

Contributions

Daohan Ge and Zhou Hu contributed to experiments and analysis of their results. Zhiwei Fang, Chao Ni, Liqiang Zhang, and Shining Zhu contributed to calculations and analysis of the results. All authors participated in the discussion of results and preparation of the manuscript.

Corresponding authors

Correspondence to Daohan Ge or Liqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, D., Hu, Z., Fang, Z. et al. Optimization of porous silicon structure as antireflective material. Eur. Phys. J. D 76, 27 (2022). https://doi.org/10.1140/epjd/s10053-022-00344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00344-3

Navigation