Skip to main content
Log in

Analysis of three-intensity decoy-state phase-matching quantum key distribution

Analysis of three-intensity PM-QKD

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Phase-matching quantum key distribution (PM-QKD) protocol has been widely researched since it was proposed. This scheme is proven to beat the linear bound. In this paper, the performance of three-intensity decoy-state PM-QKD is discussed. The effects of various parameters on the performance of transmission system with statistical fluctuation and source error are analyzed by numerical simulation. The results show that the protocol has good performance. The effects of signal state intensity and decoy-state intensity on key rate are analyzed, and the optimal key rate and the intensity of signal and decoy states are given.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data included in this study are available upon request by contact with the corresponding author.]

References

  1. C.H. Bennett, G. Brassard, Theor. Comput. Sci. 560, 7–11 (2014)

    Article  Google Scholar 

  2. N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. S.L. Braunstein, S. Pirandola, Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  4. H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  5. T. Sasaki, Y. Amamoto, M. Koashi, Nature 509, 475 (2014)

    Article  ADS  Google Scholar 

  6. S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, Nat. Commun. 8(1), 15043 (2017)

    Article  ADS  Google Scholar 

  7. M. Lucamarini, Z.L. Yuan, J.F. Dynes et al., Nature 557, 400–403 (2018)

    Article  ADS  Google Scholar 

  8. X.B. Wang, Z.W. Yu, X.L. Hu, Phys. Rev. A 98(6), 062323 (2018)

    Article  ADS  Google Scholar 

  9. Z.W. Yu, X.L. Hu, C. Jiang, H. Xu, X.B. Wang, Sci. Rep. 9(1), 3080 (2019)

    Article  ADS  Google Scholar 

  10. M. Curty, K. Azuma, H.K. Lo, npj Quantum Inf. 5(1), 64 (2019)

    Article  ADS  Google Scholar 

  11. W. Li, L. Wang, S. Zhao, Sci. Rep. 9(1), 15466 (2019)

    Article  ADS  Google Scholar 

  12. X. Ma, P. Zeng, H. Zhou, Phys. Rev. X 8(3), 031043 (2018)

    Google Scholar 

  13. P. Zeng, W. Wu, X. Ma, Phys. Rev. Appl. 12, 6 (2020)

    Google Scholar 

  14. X.X. Zhang et al., J. Opt. Soc. Am. B 38, 3 (2021)

    Google Scholar 

  15. Y. Yu et al., Opt. Exp. 29, 2 (2020)

    Google Scholar 

  16. X.B. Wang et al., Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  17. X.F. Ma, B. Qi, Y. Zhao, H.K. Lo, Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  18. W.T. Liu, S.H. Sun, L.M. Liang, J.M. Yuan, Phys. Rev. A 83, 042326 (2011)

    Article  ADS  Google Scholar 

  19. S. Wang et al., Phys. Rev. A 79(6), 062309 (2009)

    Article  ADS  Google Scholar 

  20. X.B. Wang, C.Z. Peng, J. Zhang, L. Yang, J.W. Pan, Phys. Rev. A 77(4), 042311 (2008)

    Article  ADS  Google Scholar 

  21. Q. Wang, X.B. Wang, Sci. Rep. 4, 4612 (2014)

    Article  ADS  Google Scholar 

  22. C. Jiang, Z.W. Yu, X.B. Wang, Phys. Rev. A 94(6), 062323 (2016)

    Article  ADS  Google Scholar 

  23. Q.P. Mao, L. Wang, S.M. Zhao, Quantum Inf. Process. 19, 2 (2019)

    Google Scholar 

  24. X. Ma, C.H.F. Fung, M. Razavi, Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  25. X.B. Wang, L. Yang, C.Z. Peng, J.W. Pan, New J. Phys. 11(7), 075006 (2009)

    Article  ADS  Google Scholar 

  26. D. Gottesman, H.K. Lo, N. Lutkenhaus, J. Preskill, Quantum Inf. Comput. 4, 325 (2004)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61571060), Ministry of Science and Technology of China (Grant No. 2016YFA0301300) and Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Author information

Authors and Affiliations

Authors

Contributions

All of authors contributed to the conception and design of the present work, theoretical framework, numerical calculations, result analysis, drafting of the manuscript and its critical revision.

Corresponding author

Correspondence to Rongzhen Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Huang, G., Dong, Q. et al. Analysis of three-intensity decoy-state phase-matching quantum key distribution. Eur. Phys. J. D 75, 298 (2021). https://doi.org/10.1140/epjd/s10053-021-00311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00311-4

Navigation