Skip to main content
Log in

Empirical relations for heavy-ion equilibrated charges and charge-changing cross sections in diluted \(\hbox {H}_{{2}}\) with application

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Highly ionized heavy evaporation residues (ERs) resulting from heavy-ion (HI) fusion–evaporation reactions are knocked out from solid targets to rarefied gas of gas-filled recoil separators. In gas, these ERs undergo charge-changing collisions on their way to a detection system. An equilibrium between the loss of charge (electron capture) and the gain of charge (electron loss) for ionized ERs allows one to use equilibrated charge-state distributions in trajectory calculations for ERs moving through a magnetic field. The distance from a target to the point where the ER charge-state distributions become to be the equilibrated one is essential for such calculations. This distance can be estimated in simulations based on electron capture and loss cross sections for energetic HIs. Reasonable approximations of available experimental data have provided these cross sections, which were applied to the Monte Carlo simulations of the ionic charge evolution for highly ionized heavy ERs. The results of these simulations demonstrate the setting of charge equilibration close to the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analyzed during this study are included in this published article.]

References

  1. I. Bacho, D.D. Bogdanov, Sh. Daroczy, V.A. Karnaukhov, L.A. Petrov, G.M. Ter-Akopyan, Prib. Tekh. Eksp. 2, 43 (1970)

  2. H. Miyatake, T. Nomura, H. Kawakami, J. Tanaka, M. Oyaizu, K. Morita, T. Shinozuka, H. Kudo, K. Sueki, Y. Iwata, Nucl. Instrum. Meth. B 26, 309 (1987)

    Article  ADS  Google Scholar 

  3. A. Ghiorso, S. Yashita, M.E. Leino, L. Frank, J. Kalnins, P. Armbruster, J.-P. Dufour, P.K. Lemmertz, Nucl. Instrum. Meth. A 269, 192 (1988)

    Article  ADS  Google Scholar 

  4. V. Ninov, P. Armbruster, F.P. Heßberger, S. Hofmann, G. Münzenberg, Y. Fujita, M. Leino, A. Lüttgen, Nucl. Instrum. Meth. A 357, 486 (1995)

    Article  ADS  Google Scholar 

  5. M. Leino, J. Äystö, T. Enqvist, P. Heikkinen, A. Jokinen, M. Nurmia, A. Ostrowski, W.H. Trzaska, J. Uusitalo, K. Eskola, P. Armbruster, V. Ninov, Nucl. Instrum. Meth. B 99, 653 (1995)

    Article  ADS  Google Scholar 

  6. K. Subotic, Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F.Sh. Abdullin, A.N. Polyakov, Yu.S. Tsyganov, O.V. Ivanov, Nucl. Instrum. Meth. A 481, 71 (2002)

  7. A. Semchenkov, W. Brüchle, E. Jäger, E. Schimpf, M. Schädel, C. Mühle, F. Klos, A. Türler, A. Yakushev, A. Belov, T. Belyakova, M. Kaparkova, V. Kukhtin, E. Lamzin, S. Sytchevsky, Nucl. Instrum. Meth. B 266, 4153 (2008)

    Article  ADS  Google Scholar 

  8. Z.Y. Zhang, L. Ma, Z.G. Gan, M.H. Huang, T.H. Huang, G.S. Li, X.L. Wu, G.B. Jia, L. Yu, H.B. Yang, Z.Y. Sun, X.H. Zhou, H.S. Xu, W.L. Zhan, Nucl. Instrum. Meth. B 317, 315 (2013)

    Article  ADS  Google Scholar 

  9. N. Bohr, Phys. Rev. 59, 270 (1941)

    Article  ADS  Google Scholar 

  10. Yu.Ts. Oganessian, V.K. Utyonkov, Nucl. Phys. A 944, 62 (2015)

  11. A.G. Popeko, Nucl. Instrum. Meth. B 376, 14 (2016) 4

  12. W. Beeckman, S. Antoine, V. Dumilly, F. Forest, P. Jehanno, P. Jivkov, M.J. Leray, X. Milpied, C. Nignol, O. Tasset-Maye, A.G. Popeko, V.K. Utyonkov, in Proceedings of the 22-nd International Conference on Cyclotrons and their Applications, Cape Town, South Africa, 2019. https://cyclotrons2019.vrws.de/talks/mob03_talk.pdf

  13. K. Shima, T. Ishihara, T. Mikumo, Nucl. Instrum. Meth. 200, 605 (1982)

    Article  Google Scholar 

  14. R.N. Sagaidak, A.V. Yeremin, Nucl. Instrum. Meth. B 93, 103 (1994)

    Article  ADS  Google Scholar 

  15. G. Schiwietz, P.L. Grande, Nucl. Instrum. Meth. B 175–177, 125 (2001)

    Article  ADS  Google Scholar 

  16. N.H. Steiger, in Proc. III Conference on Reactions between Complex Nuclei, Asilomar, USA, 1963, edited by A. Ghiorso (University of California Press, Berkeley, 1963) p. 407

  17. N.K. Skobelev, V.Z. Maidikov, N.T. Surovitskaya, Z. Phys. A 314, 5 (1983)

  18. K.-T. Brinkmann, A.L. Caraley, B.J. Fineman, N. Gan, J. Velkovska, R.L. McGrath, Phys. Rev. C 50, 309 (1994)

    Article  ADS  Google Scholar 

  19. R.N. Sagaidak, L. Corradi, E. Fioretto, A.M. Stefanini, S. Beghini, G. Montagnoli, F. Scarlassara, S. Szilner, LNL Annual Report 2008 (INFN-LNL-226, 2009) p. 31

  20. R.N. Sagaidak, N.A. Kondratiev, L. Corradi, E. Fioretto, T. Mijatovic, G. Montagnoli, F. Scarlassara, A.M. Stefanini, S. Szilner, Phys. Rev. C 97, 054622 (2018)

    Article  ADS  Google Scholar 

  21. H.D. Betz, Rev. Mod. Phys. 44, 465 (1973)

    Article  ADS  Google Scholar 

  22. M. Paul, B.G. Glagola, W. Henning, J.G. Keller, W. Kutschera, Z. Liu, K.E. Rehm, B. Schneck, R.H. Siemssen, Nucl. Instrum. Meth. A 277, 418 (1989)

    Article  ADS  Google Scholar 

  23. K.E. Gregorich, Nucl. Instrum. Meth. A 711, 47 (2013)

    Article  ADS  Google Scholar 

  24. A.-B. Wittkower, H.D. Betz, Phys. Rev. A 7, 166 (1973)

    Article  ADS  Google Scholar 

  25. I.S. Dmitriev, V.S. Nikolaev, Sov. Phys. JETP-USSR 20, 409 (1965)

  26. Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F.Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu.S. Tsyganov, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, K. Subotic, Yu.A. Lazarev, K.J. Moody, J.F. Wild, N.J. Stoyer, M.A. Stoyer, R.W. Lougheed, C.A. Laue, Phys. Rev. C 64, 064309 (2001)

  27. A.-B. Wittkower, H.D. Betz, At. Data 5, 113 (1973)

    Article  ADS  Google Scholar 

  28. P. Scharrer, ChE Düllmann, W. Barth, J. Khuyagbaatar, A. Yakushev, M. Bevcic, P. Gerhard, L. Groening, K.P. Horn, E. Jäger, J. Krier, H. Vormann, Phys. Rev. Accel. Beams 20, 043503 (2017)

    Article  ADS  Google Scholar 

  29. J. Khuyagbaatar, D. Ackermann, L.-L. Andersson, J. Ballof, W. Brüchle, ChE Düllmann, J. Dvorak, K. Eberhardt, J. Even, A. Gorshkov, R. Graeger, F.-P. Heßberger, D. Hild, R. Hoischen, E. Jäger, B. Kindler, J.V. Kratz, S. Lahiri, B. Lommel, M. Maiti, E. Merchan, D. Rudolph, M. Schädel, H. Schaffner, B. Schausten, E. Schimpf, A. Semchenkov, A. Serov, A. Türler, A. Yakushev, Nucl. Instrum. Meth. A 689, 40 (2012)

    Article  ADS  Google Scholar 

  30. J. Sarén, J. Uusitalo, M. Leino, J. Sorri, Nucl. Instrum. Meth. A 654, 508 (2011)

    Article  ADS  Google Scholar 

  31. H. Knudsen, H.K. Haugen, P. Hvelplund, Phys. Rev. A 23, 597 (1981)

    Article  ADS  Google Scholar 

  32. A.S. Schlachter, J.W. Stearns, W.G. Graham, K.H. Berkner, R.V. Pyle, J.A. Tanis, Phys. Rev. A 27, 3372 (1983)

    Article  ADS  Google Scholar 

  33. N. Bohr, J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28(7), (1954)

  34. J. Sorensen, L.H. Andersen, P. Hvelplund, H. Knudsen, L. Liljeby, E.H. Nielsen, J. Phys. B 17, 4743 (1984)

    Article  ADS  Google Scholar 

  35. P. Hvelplund, S.K. Bjørnelund, H. Knudsen, H. Tawara, Phys. Scripta. 45, 231 (1992)

    Article  ADS  Google Scholar 

  36. K.R. Cornelius, Phys. Rev. A 73, 032710 (2006)

    Article  ADS  Google Scholar 

  37. B. Franzke, IEEE T. Nucl. Sci. NS-28, 2116 (1981)

  38. A.C.F. Santos, R.D. DuBois, Phys. Rev. A 69, 042709 (2004)

    Article  ADS  Google Scholar 

  39. V.P. Shevelko, M.-Y. Song, IYu. Tolstikhina, H. Tawara, J.-S. Yoon, Nucl. Instrum. Meth. B 278, 63 (2012)

    Article  ADS  Google Scholar 

  40. K.H. Berkner, W.G. Graham, R.V. Pyle, A.S. Schlachter, J.W. Stearns, Phys. Rev. A 23, 2891 (1981)

    Article  ADS  Google Scholar 

  41. R.N. Sagaidak, V.K. Utyonkov, F. Scarlassara, Nucl. Instrum. Meth. A 700, 111 (2013)

    Article  ADS  Google Scholar 

  42. S. Datz, H.O. Lutz, L.B. Bridwell, S.D. Moak, H.D. Betz, L.D. Ellsworth, Phys. Rev. A 2, 430 (1970)

    Article  ADS  Google Scholar 

  43. V.I. Zagrebaev, W. Greiner, Nucl. Phys. A 944, 257 (2015)

    Article  ADS  Google Scholar 

  44. K.P. Santhosh, V. Safoora, Phys. Rev. C 96, 034610 (2017)

    Article  ADS  Google Scholar 

  45. S. Datz, R. Hippler, L.H. Andersen, P.F. Dittner, H. Knudsen, H.F. Krause, P.D. Miller, P.L. Pepmiller, T. Rosseel, R. Schuch, N. Stolterfoht, Y. Yamazaki, C.R. Vane, Phys. Rev. A 41, 3559 (1990)

Download references

Acknowledgements

The author is indebted to Dr. V.K. Utyonkov for providing new data on the mean charges in hydrogen for the heaviest ERs, which were obtained with DGFRS. This study was supported in part by the directorate of JINR under a special grant for the SHN program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman N. Sagaidak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagaidak, R.N. Empirical relations for heavy-ion equilibrated charges and charge-changing cross sections in diluted \(\hbox {H}_{{2}}\) with application. Eur. Phys. J. D 75, 220 (2021). https://doi.org/10.1140/epjd/s10053-021-00236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00236-y

Navigation