Skip to main content
Log in

Spatial confinement, non-Hermitian Hamiltonians and related problems

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We treat simple examples of systems described by non-relativistic model Hamiltonians which are unconventional. They are not necessarily Hermitian operators. In practice, they often contain applied external fields which are not necessarily small, and they seek to describe the effects of spatial confinement more realistically than most of the classic calculations (some of them by the present authors). A much studied model of a free particle confined by a non-real potential can be accommodated within the same theoretical framework. Numerical treatment of these and similar problems seems well within the capacity of very modest computer systems, as exemplified by a few tabulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All calculated results are presented within the paper.]

References

  1. J.D. Pryce, Basic Methods of Linear Functional Analysis (Hutchinson, Kansas, 1973).

    MATH  Google Scholar 

  2. A. Mostafazadeh, J. Math. Phys. 43, 2814 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Mostafazadeh, Pramana J. Phys. 73, 269 (2009)

    Article  ADS  Google Scholar 

  4. A. Michels, J. de Boer, A. Bijl, Physica 4, 981 (1937)

    Article  ADS  Google Scholar 

  5. E. Ley-Koo, S. Rubinstein, J. Chem. Phys. 71, 351 (1979)

    Article  ADS  Google Scholar 

  6. P.W. Fowler, Mol. Phys. 53, 865 (1984)

    Article  ADS  Google Scholar 

  7. C. Laughin, B.L. Burrows, M. Cohen, J. Phys. B 35, 701 (2002)

    Article  ADS  Google Scholar 

  8. C. Laughlin, J. Phys. B 37, 4085 (2004)

    Article  Google Scholar 

  9. B.L. Burrows, M. Cohen, Phys. Rev. A 72, 032508–1 (2005)

    Article  ADS  Google Scholar 

  10. N. Aquino, G. Campoy, H.E. Montgomery Jr., Int. J. Quant. Chem. 107, 1548 (2007)

    Article  ADS  Google Scholar 

  11. B.L. Burrows, M. Cohen, Int. J. Quant. Chem. 106, 478 (2006)

    Article  ADS  Google Scholar 

  12. J. Sabin, E. Brandas, S.A. Cruz (eds.), Advances in Quantum Chemistry, vol. 57 (Elsevier, Amsterdam, 2009)

    Google Scholar 

  13. R. Feynman, The Feynman Lectures on Physics, vol. 3 (Addison Wesley, Boston, 1965), pp. 11–1

    Google Scholar 

  14. C. Bender, Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  Google Scholar 

  15. F. Kleefeld (2009). arXiv:0906.1011 [hep-th]

  16. C. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Bender, D.C. Brody, H. Jones, Phys. Rev. Lett. 89, 270401–1 (2002)

    Article  MathSciNet  Google Scholar 

  18. P. Dorey, C. Dunning, R. Tateo, J. Phys. A 34, L391 (2001)

    Article  ADS  Google Scholar 

  19. P. Dorey, C. Dunning, R. Tateo, J. Phys A 34, 5679 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to place on record our thanks to reviewers, whose helpful comments have led to a greatly improved version of the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian L Burrows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burrows, B.L., Cohen, M. Spatial confinement, non-Hermitian Hamiltonians and related problems. Eur. Phys. J. D 75, 70 (2021). https://doi.org/10.1140/epjd/s10053-021-00093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00093-9

Navigation