Skip to main content
Log in

Action spectroscopy of deprotomer-selected hydroxycinnamate anions

  • Regular Article - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Tandem ion mobility mass spectrometry-coupled laser excitation is used to record photodetachment, photoisomerization and photodepletion action spectra for a series of deprotomer-selected hydroxycinnamate anions, including deprotonated caffeic, ferulic and sinapinic acids. This molecular series accounts for most hydroxycinnamic moieties found in nature. Phenoxide deprotomers for para and ortho structural isomers have similar photodetachment action spectra that span the 350 – 460 nm range with the maximum response occurring between 420 and 440 nm. None of the phenoxide deprotomers showed evidence for E\(\rightarrow \)Z photoisomerization. In contrast, photoexcitation of the carboxylate deprotomers of caffeic and ferulic acids and the meta-phenoxide deprotomer of caffeic acid initiates intramolecular proton transfer to give the para-phenoxide deprotomer. Photoexcitation of the carboxylate deprotomer of sinapinic acid and ortho-coumaric acid does not result in intramolecular proton transfer, presumably due to substantial barriers for rearrangement. For deprotonated meta-coumaric acid, interconversion between the phenoxide and carboxylate deprotomers occurs in the ion mobility spectrometer drift region where the effective ion temperature is \(T_{eff}\approx \)299 K.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and analysed for the current study are available from the authors on reasonable request.]

References

  1. K. Pei, J. Ou, J. Huang, S. Ou, J. Sci. Food Agricult. 96, 2952 (2016)

    Article  Google Scholar 

  2. T. Meyer, Biochim. Biophys. Acta -. Bioenergetics 806, 175 (1985)

    Article  Google Scholar 

  3. T.E. Meyer, E. Yakali, M.A. Cusanovich, G. Tollin, Biochem. 26, 418 (1987)

    Article  Google Scholar 

  4. W.W. Sprenger, W.D. Hoff, J.P. Armitage, K.J. Hellingwerf, J. Bacteriol. 175, 3096 (1993)

    Article  Google Scholar 

  5. L.A. Baker, M.D. Horbury, S.E. Greenough, F. Allais, P.S. Walsh, S. Habershon, V.G. Stavros, J. Phys. Chem. Lett. 7, 56 (2016)

    Article  Google Scholar 

  6. J. Ralph, Phytochem. Rev. 9, 65 (2010)

    Article  Google Scholar 

  7. P. Changenet-Barret, A. Espagne, S. Charier, J.B. Baudin, L. Jullien, P. Plaza, K.J. Hellingwerf, M.M. Martin, Photochem. Photobiol. Sci. 3, 823 (2004)

    Article  Google Scholar 

  8. H. El-Gezawy, W. Rettig, A. Danel, G. Jonusauskas, J. Phys. Chem. B 109, 18699 (2005)

    Article  Google Scholar 

  9. A. Espagne, D.H. Paik, P. Changenet-Barret, M.M. Martin, A.H. Zewail, ChemPhysChem 7, 1717 (2006)

    Article  Google Scholar 

  10. A. Espagne, P. Changenet-Barret, P. Plaza, M.M. Martin, J. Phys. Chem. A 110, 3393 (2006)

    Article  Google Scholar 

  11. A.D. Stahl, M. Hospes, K. Singhal, I. van Stokkum, R. van Grondelle, M.L. Groot, K.J. Hellingwerf, Biophys. J. 101, 1184 (2011)

    Article  ADS  Google Scholar 

  12. H. Kuramochi, S. Takeuchi, T. Tahara, J. Phys. Chem. Lett. 3, 2025 (2012)

    Article  Google Scholar 

  13. P. Changenet-Barret, F. Lacombat, P. Plaza, J. Photochem. Photobiol. A: Chem. 234, 171 (2012)

    Article  Google Scholar 

  14. G. Groenhof, M. Bouxin-Cademartory, B. Hess, S.P. de Visser, H.J.C. Berendsen, M. Olivucci, A.E. Mark, M.A. Robb, J. Am. Chem. Soc. 126, 4228 (2004)

    Article  Google Scholar 

  15. G. Groenhof, L.V. Schäfer, M. Boggio-Pasqua, H. Grubmüller, M.A. Robb, J. Am. Chem. Soc. 130, 3250 (2008)

    Article  Google Scholar 

  16. E.V. Gromov, I. Burghardt, J.T. Hynes, H. Köppel, L.S. Cederbaum, J. Photochem. Photobiol. A Chem. 190, 241 (2007)

    Article  Google Scholar 

  17. C. Ko, A.M. Virshup, T.J. Martínez, Chem. Phys. Lett. 460, 272 (2008)

    Article  ADS  Google Scholar 

  18. A.M. Virshup, C. Punwong, T.V. Pogorelov, B.A. Lindquist, C. Ko, T.J. Martínez, J. Phys. Chem. B 113, 3280 (2009)

    Article  Google Scholar 

  19. M. Boggio-Pasqua, G. Groenhof, J. Phys. Chem. B 115, 7021 (2011)

    Article  Google Scholar 

  20. C.M. Isborn, A.W. Götz, M.A. Clark, R.C. Walker, T.J. Martínez, J. Chem. Theor. Comput. 8, 5092 (2012)

    Article  Google Scholar 

  21. F.F. García-Prieto, A. Muñoz Losa, M.L. Sánchez, M.E. Martín, M.A. Aguilar, Phys. Chem. Chem. Phys. 18, 27476 (2016)

  22. F.F. García-Prieto, A. Muñoz Losa, I.F. Galván, M.L. Sánchez, M.A. Aguilar, M.E. Martín, J. Chem. Theo. Comput. 13, 737 (2017). https://doi.org/10.1021/acs.jctc.6b01069

  23. K.B. Bravaya, B.L. Grigorenko, A.V. Nemukhin, A.I. Krylov, Acc. Chem. Res. 45, 265 (2012)

    Article  Google Scholar 

  24. S. Brøndsted Nielsen, J.A. Wyer (eds.), Photophysics of Ionic Biochromophores (Springer, Berlin, 2013)

  25. I.B. Nielsen, S. Boyé-Péronne, M.O. El Ghazaly, M.B. Kristensen, S. Brøndsted Nielsen, L.H. Andersen, Biophys. J. 89, 2597 (2005)

  26. T. Rocha-Rinza, O. Christiansen, J. Rajput, A. Gopalan, D.B. Rahbek, L.H. Andersen, A.V. Bochenkova, A.A. Granovsky, K.B. Bravaya, A.V. Nemukhin, K.L. Christiansen, M. Brøndstedielsen, J. Phys. Chem. A 113, 9442 (2009)

    Article  Google Scholar 

  27. T. Rocha-Rinza, O. Christiansen, D.B. Rahbek, B. Klærke, L.H. Andersen, K. Lincke, M.B. Nielsen, Chem. Eur. J. 16, 11977 (2010)

    Article  Google Scholar 

  28. L.H. Andersen, A.V. Bochenkova, J. Houmøller, H.V. Kiefer, E. Lattouf, M.H. Stockett, Phys. Chem. Chem. Phys. 18, 9909 (2016)

    Article  Google Scholar 

  29. J.N. Bull, C.S. Anstöter, J.R.R. Verlet, J. Phys. Chem. A 124, 2140 (2020)

    Article  Google Scholar 

  30. I.R. Lee, W. Lee, A.H. Zewail, Proc. Nat. Acad. Sci. 103, 258 (2006)

    Article  ADS  Google Scholar 

  31. J.N. Bull, C.S. Anstöter, J.R.R. Verlet, Nat. Commun. 10, 5820 (2019)

    Article  ADS  Google Scholar 

  32. C.S. Anstöter, B.F.E. Curchod, J.R.R. Verlet, Nat. Commun. 11, 2827 (2020)

    Article  ADS  Google Scholar 

  33. J.N. Bull, G. da Silva, M.S. Scholz, E. Carrascosa, E.J. Bieske, J. Phys. Chem. A 123, 4419 (2019)

    Article  Google Scholar 

  34. G.A. Eiceman, Z. Karpas, H.H. Hill, Ion Mobility Spectrometry, 3rd edn. (CRC Press, Boca Raton, 2013)

    Book  Google Scholar 

  35. J.N. Bull, J.T. Buntine, M.S. Scholz, E. Carrascosa, L. Giacomozzi, M.H. Stockett, E.J. Bieske, Faraday Discuss. 217, 34 (2019)

    Article  ADS  Google Scholar 

  36. B.D. Adamson, N.J.A. Coughlan, P.B. Markworth, R.E. Continetti, E.J. Bieske, Rev. Sci. Instr. 85, 123109 (2014)

    Article  ADS  Google Scholar 

  37. J.N. Bull, M. Scholz, E. Carrascosa, G. da Silva, E.J. Bieske, Phys. Rev. Lett. 120, 223002 (2018)

    Article  ADS  Google Scholar 

  38. J.N. Bull, C.W. West, C.S. Anstöter, G. da Silva, E.J. Bieske, J.R.R. Verlet, Phys. Chem. Chem. Phys. 21, 10567 (2019)

    Article  Google Scholar 

  39. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 16 Revision B.01. Gaussian Inc. Wallingford CT (2016)

  40. F. Neese, WIRES Comput. Mol. Sci. 2, 73 (2012)

    Article  Google Scholar 

  41. J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)

    Article  Google Scholar 

  42. J.T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  43. C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 139, 134101 (2013)

    Article  ADS  Google Scholar 

  44. I. Campuzano, M.F. Bush, C.V. Robinson, C. Beaumont, K. Richardson, H. Kim, H.I. Kim, Anal. Chem. 84, 1026 (2012)

    Article  Google Scholar 

  45. B.H. Besler, K.M. Merz Jr., P.A. Kollman, J. Comput. Chem. 11, 431 (1990)

    Article  Google Scholar 

  46. J.N. Bull, M.S. Scholz, N.J.A. Coughlan, A. Kawai, E.J. Bieske, Anal. Chem. 88, 11978 (2016)

    Article  Google Scholar 

  47. E. Carrascosa, J.N. Bull, M.S. Scholz, N.J.A. Coughlan, S. Olsen, U. Wille, E.J. Bieske, J. Phys. Chem. Lett. 9, 2647 (2018)

    Article  Google Scholar 

  48. J.N. Bull, E. Carrascosa, N. Mallo, M.S. Scholz, G. da Silva, J.E. Beves, E.J. Bieske, J. Phys. Chem. Lett. 9, 665 (2018)

    Article  Google Scholar 

  49. S. Poyer, C. Comby-Zerbino, C.M. Choi, L. MacAleese, C. Deo, N. Bogliotti, J. Xie, J.Y. Salpin, P. Dugourd, F. Chirot, Anal. Chem. 89, 4230 (2017)

    Article  Google Scholar 

  50. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases, Chapter 5. Kinetic Theory of Mobility and Diffusion (Wiley, Hoboken, 2005), pp. 137–224

  51. F. Bureš, RSC Adv. 4, 58826 (2014)

    Article  ADS  Google Scholar 

  52. G. Papadopoulos, A. Svendsen, O.V. Boyarkin, T.R. Rizzo, Faraday Discuss. 150, 243 (2011)

    Article  ADS  Google Scholar 

  53. B. Bellina, J.M. Brown, J. Ujma, P. Murray, K. Giles, M. Morris, I. Compagnon, P.E. Barran, Analyst 139, 6348 (2014)

  54. S. Warnke, C. Baldauf, M.T. Bowers, K. Pagel, G. von Helden, J. Am. Chem. Soc. 136, 10308 (2014)

    Article  Google Scholar 

  55. A.L. Simon, F. Chirot, C.M. Choi, C. Clavier, M. Barbaire, J. Maurelli, X. Dagany, L. MacAleese, P. Dugourd, Rev. Sci. Instrum. 86, 094101 (2015)

    Article  ADS  Google Scholar 

  56. O. Hernandez, S. Isenberg, V. Steinmetz, G.L. Glish, P. Maitre, J. Phys. Chem. A 119, 6057 (2015)

    Article  Google Scholar 

  57. S.J.P. Marlton, B.I. McKinnon, B. Ucur, A.T. Maccarone, W.A. Donald, S.J. Blanksby, A.J. Trevitt, Faraday Discuss. 217, 453 (2019)

    Article  ADS  Google Scholar 

  58. N.J.A. Coughlan, P.J.J. Carr, S.C. Walker, C. Zhou, M. Guna, J.L. Campbell, W.S. Hopkins, J. Am. Soc. Mass Spectrom. 31, 405 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported under the Australian Research Council’s Discovery Project funding scheme (DP150101427 and DP160100474) and Swedish Foundation for International Cooperation in Research and Higher Education (STINT, Grant Number PT2017-7328). JTB acknowledges The University of Melbourne for a Melbourne Research Scholarship (MRS) and the Australian Government for an Australian Research Training Program Scholarship (RTP). EC acknowledges support by the Austrian Science Fund (FWF) through a Schrödinger Fellowship (Nr. J4013-N36). Electronic structure calculations were carried out on the High Performance Computing Cluster supported by the Research and Specialist Computing Support service at the University of East Anglia.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed by all authors. Calculations were performed by JNB. The manuscript was drafted by JNB with contributions from all authors.

Corresponding author

Correspondence to Evan J. Bieske.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 600 KB)

Appendix

Appendix

The correlation between calculated (\(\varOmega _{c}\)) and measured (\(\varOmega _{m}\)) collision cross sections for the hydroxycinnamates anions studied in this work is shown in Fig. 10. The calculated collision cross sections are for the lowest energy (equilibrium) geometry. Gas-phase ions in the drift region will undergo internal rotation about single bonds and exhibit fluxionality of methoxy groups. Molecular dynamics simulations and conformationally averaged calculated collision cross sections are necessary to treat fluxionality more realistically.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bull, J.N., Buntine, J.T., Carrascosa, E. et al. Action spectroscopy of deprotomer-selected hydroxycinnamate anions. Eur. Phys. J. D 75, 67 (2021). https://doi.org/10.1140/epjd/s10053-021-00070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00070-2

Navigation