Skip to main content
Log in

Dependence of Inertial Confinement Fusion capsule performance on fuel reaction rate

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In Inertial Confinement Fusion the ignition of the Deuterium–Tritium fuel and the self-sustained thermonuclear burn-wave propagation depend on several factors among them the reaction rate, product of the number densities of the reactants and the thermal reactivity of the fusion reaction. Different mechanisms could affect the reactivity and modify the final thermonuclear gain leading to a failure of ignition. Here, it is analysed the effect of a fuel reaction rate degraded by a given factor \(\upchi ~< ~1\) on the kinetic energy needed to reach fuel ignition and thermonuclear burn-out. Ignition and burnout thresholds are firstly defined in the metrics of reactivity factor \(\upchi \) and homothetic scaling curves. Then a parametric variation of \(\upchi \) shows that a reduction of 10% (20%) on the reaction rate approximately implies a 15% (50% respectively) increase in the kinetic energies thresholds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. J.D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and high Gain Using Indirect Drive (Springer, New York, 1998)

    Google Scholar 

  2. S. Atzeni, J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Oxford Science Press, Oxford, 2004)

    Book  Google Scholar 

  3. G.S. Fraley, E.J. Linnebur, R.J. Mason, R.L. Morse, Phys. Fluids 17, 474 (1974)

    Article  ADS  Google Scholar 

  4. S. Atzeni, A. Caruso, Nuovo Cimento 80B, 71 (1984)

    Article  ADS  Google Scholar 

  5. M.M. Basko, Nucl. Fusion 30, 2443 (1990)

    Article  MathSciNet  Google Scholar 

  6. P. Amendt, S.C. Wilks, C. Bellei, C.K. Li, R.D. Petrasso, Phys. Plasmas 18, 056308 (2011)

    Article  ADS  Google Scholar 

  7. C. Bellei, P.A. Amendt, S.C. Wilks, M.G. Haines, D.T. Casey, C.K. Li, R. Petrasso, D.R. Welch, Phys. Plasmas 20, 012701 (2013)

    Article  ADS  Google Scholar 

  8. A. Inglebert, B. Canaud, O. Larroche, Europhys. Lett. 107, 25003 (2014)

    Article  Google Scholar 

  9. H.S. Bosch, G.M. Hale, Nucl. Fusion 32, 611 (1992)

    Article  ADS  Google Scholar 

  10. N. Jangle, J.D. Seagrave, R.C. Allen, A. Armstrong, H.V. Argo, S.J. Bame, J.E. Broiley, J.H. Coon, G.M. Frye, A. Hemmendinger, T.H. Putnam, F.L. Ribe, G.A. Sawyer, A.W. Schardt, L. Stewart, T.F. Stratton, W.R. Stratton, N.J. Terrell, H.M. Thorpe, S. Whetstone, J.L. Varnell, Charged Particle Cross Sections, Los Alamos Scientific Laboratory report LA-2014 (1956)

  11. S.L. Jr. Greene, Maxwell Averaged Cross Sections for some Thermonuclear Reactions on Light Isotopes, Tech. Rep. UCRL-70522, Lawrence Radiation Laboratory, Livermore, CA (1967)

  12. J.R. Jr. McNally, K.E. Rothe, R.D. Sharp, Fusion Reactivity Graphs and Tables for Charged Particle Reactions. Tech. Rep. ORNLiTM-6914, Oak Ridge National Laboratory, Oak Ridge (1979)

  13. N.A. Tahir, D.H.H. Hoffmann, Fusion Eng. Des. 24, 413 (1994)

    Article  Google Scholar 

  14. V. Brandon, B. Canaud, M. Temporal, R. Ramis, Nucl. Fusion 54, 083016 (2014)

    Article  ADS  Google Scholar 

  15. M. Temporal, V. Brandon, B. Canaud, J.P. Didelez, R. Fedosejevs, R. Ramis, Nucl. Fusion 52, 103011 (2012)

    Article  ADS  Google Scholar 

  16. R.E. Kidder, Nucl. Fusion 16, 405 (1976)

    Article  ADS  Google Scholar 

  17. R. Ramis, J. Meyer-ter-Vehn, Comput. Phys. Commun. 203, 226 (2016)

    Article  ADS  Google Scholar 

  18. M.M. Basko, J. Johner, Nucl. Fusion 38, 1779 (1998)

    Article  ADS  Google Scholar 

  19. B. Canaud, F. Garaude, P. Ballereau, J.L. Bourgade, C. Clique, D. Dureau, M. Houry, S. Jaouen, H. Jourdren, N. Lecler, L. Masse, A. Masson, R. Quach, R. Piron, D. Riz, J. Van der Vliet, M. Temporal, J.A. Delettrez, P.W. McKenty, Plasma Phys. Control. Fusion 49, B601 (2007)

    Article  ADS  Google Scholar 

  20. M. Murakami, S. Iida, Phys. Plasmas 9, 2745 (2002)

    Article  ADS  Google Scholar 

  21. E. Falize, S. Bouquet, C. Michaut, Astrophys. Space Sci. 322, 107 (2009)

    Article  ADS  Google Scholar 

  22. E. Falize, C. Michaut, S. Bouquet, Astrophys. J. 730, 96 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the CEA-ENS LRC-MESO grant \(\hbox {n}^{\circ }\)2018-011. R. R. has been supported by the Spanish Ministerio de Ciencia Innovacion y Universidades project RTI2018-098801-B-100. The authors would like to thank the Referee for the fruitful suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Mauro Temporal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temporal, M., Canaud, B. & Ramis, R. Dependence of Inertial Confinement Fusion capsule performance on fuel reaction rate. Eur. Phys. J. D 75, 8 (2021). https://doi.org/10.1140/epjd/s10053-020-00032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00032-0

Navigation