Skip to main content
Log in

Excited state dynamics of protonated keto uracil: intersystem crossing pathways in competition

  • Regular Article - Topical Issue
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The relaxation dynamics of protonated keto uracil has been investigated through cryogenic UV photodissociation spectroscopy. Steady-state spectroscopy and time-resolved photochemistry, including pump-probe photodissociation and kinetics of appearance of photofragments, are monitored over 10 orders of magnitude as a function of excess energy imparted in the bright \(^{\mathrm {1}}\uppi \uppi \)* state. Although photofragments are produced in the ground electronic state after internal conversion, the non-radiative decay mechanism abruptly changes with a slight increase of excess energy in the \(^{\mathrm {1}}\uppi \uppi \)* state. At the band origin, a three-step decay involving electronic couplings to the charge transfer \(^{\mathrm {1}}\hbox {n}_{\text {o}}\uppi \)* state and the triplet \(^{\mathrm {3}}\uppi \uppi \)* state with lifetimes in the range of \(10\,{\upmu }\hbox {s}\) and 2 ms, respectively, is proposed. However, the pathway through the charge transfer state closes a few hundreds of wavenumbers above the band origin. From this excess energy, the excited state population is transferred through a low energy barrier towards a region of the \(^{\mathrm {1}}\uppi \uppi \)* potential energy surface where a triple crossing with the \(^{\mathrm {3}}\uppi \uppi \)* state and the ground state is located. The experimental results are assigned with the help of ab initio calculations at the spin-component scaled coupled-cluster level.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. W.J. Schreier, P. Gilch, W. Zinth, Annu. Rev. Phys. Chem. 66, 497 (2015)

    Article  ADS  Google Scholar 

  2. S. Boldissar, M.S. De Vries, Phys. Chem. Chem. Phys. 20, 9701 (2018)

    Article  Google Scholar 

  3. H. Kang, K.T. Lee, B. Jung, Y.J. Ko, S.K. Kim, J. Am. Chem. Soc. 124, 12958 (2002)

    Article  Google Scholar 

  4. S. Ullrich, T. Schultz, M.Z. Zgierski, A. Stolow, Phys. Chem. Chem. Phys. 6, 2796 (2004)

    Article  Google Scholar 

  5. C. Canuel, M. Mons, F. Piuzzi, B. Tardivel, I. Dimicoli, M. Elhanine, J. Chem. Phys. 122, 074316 (2005)

    Article  ADS  Google Scholar 

  6. J.-M.L. Pecourt, J. Peon, B. Kohler, J. Am. Chem. Soc. 123, 10370 (2001)

    Article  Google Scholar 

  7. T. Gustavsson, A. Sharonov, D. Markovitsi, Chem. Phys. Lett. 351, 195 (2002)

    Article  ADS  Google Scholar 

  8. B. Marchetti, T.N.V. Karsili, M.N.R. Ashfold, W. Domcke, Phys. Chem. Chem. Phys. 18, 20007 (2016)

    Article  Google Scholar 

  9. R. Improta, F. Santoro, L. Blancafort, Chem. Rev. 116, 3540 (2016)

    Article  Google Scholar 

  10. K. Kleinermanns, D. Nachtigallová, M.S. de Vries, Int. Rev. Phys. Chem. 32, 308 (2013)

    Article  Google Scholar 

  11. B.B. Brady, L.A. Peteanu, D.H. Levy, Chem. Phys. Lett. 147, 538 (1988)

    Article  ADS  Google Scholar 

  12. M. Ligare, F. Siouri, O. Bludsky, D. Nachtigallová, M.S. de Vries, Phys. Chem. Chem. Phys. 17, 24336 (2015)

    Article  Google Scholar 

  13. S. Yamazaki, T. Taketsugu, J. Phys. Chem. A 116, 491 (2012)

    Article  Google Scholar 

  14. L. Freund, M. Klessinger, Int. J. Quantum Chem. 70, 1023 (1998)

    Article  Google Scholar 

  15. M. Etinski, T. Fleig, C.M. Marian, J. Phys. Chem. A 113, 11809 (2009)

    Article  Google Scholar 

  16. D. Nachtigallovaì, A.J.A. Aquino, J.J. Szymczak, M. Barbatti, P. Hobza, H. Lischka, J. Phys. Chem. A 115, 5247 (2011)

    Article  Google Scholar 

  17. M. Richter, S. Mai, P. Marquetand, L. González, Phys. Chem. Chem. Phys. 16, 24423 (2014)

    Article  Google Scholar 

  18. M.A. El-Sayed, J. Chem. Phys. 38, 2834 (1963)

    Article  ADS  Google Scholar 

  19. H. Yu, J.A. Sanchez-Rodriguez, M. Pollum, C.E. Crespo-Hernandez, S. Mai, P. Marquetand, L. Gonzalez, S. Ullrich, Phys. Chem. Chem. Phys. 18, 20168 (2016)

    Article  Google Scholar 

  20. S. Soorkia, C. Jouvet, G. Grégoire, Chem. Rev. 120, 3296 (2020)

    Article  Google Scholar 

  21. O.V. Boyarkin, S.R. Mercier, A. Kamariotis, T.R. Rizzo, J. Am. Chem. Soc. 128, 2816 (2006)

    Article  Google Scholar 

  22. J.A. Stearns, S. Mercier, C. Seaiby, M. Guidi, O.V. Boyarkin, T.R. Rizzo, J. Am. Chem. Soc. 129, 11814 (2007)

    Article  Google Scholar 

  23. S. Soorkia, M. Broquier, G. Grégoire, J. Phys. Chem. Lett. 5, 4349 (2014)

    Article  Google Scholar 

  24. M. Broquier, S. Soorkia, C. Dedonder-Lardeux, C. Jouvet, P. Theulé, G. Grégoire, J. Phys. Chem. A 120, 3797 (2016)

    Article  Google Scholar 

  25. S. Soorkia, M. Broquier, G. Grégoire, Phys. Chem. Chem. Phys. 18, 23785 (2016)

    Article  Google Scholar 

  26. A.V. Zabuga, M.Z. Kamrath, O.V. Boyarkin, T.R. Rizzo, J. Chem. Phys. 141, 154309 (2014)

    Article  ADS  Google Scholar 

  27. G. Féraud, M. Broquier, C. Dedonder, C. Jouvet, G. Grégoire, S. Soorkia, J. Phys. Chem. A 119, 5914 (2015)

    Article  Google Scholar 

  28. M. Berdakin, G. Féraud, C. Dedonder-Lardeux, C. Jouvet, G.A. Pino, Phys. Chem. Chem. Phys 16, 10643 (2014)

    Article  Google Scholar 

  29. M. Broquier, S. Soorkia, G. Pino, C. Dedonder-Lardeux, C. Jouvet, G. Grégoire, J. Phys. Chem. A 121, 6429 (2017)

    Article  Google Scholar 

  30. S.Ø. Pedersen, C.S. Byskov, F. Turecek, S.B. Nielsen, J. Phys. Chem. A 118, 4256 (2014)

    Article  Google Scholar 

  31. R. Omidyan, F. Abedini, L. Shahrokh, G. Azimi, J. Phys. Chem. A 124, 5089 (2020)

    Article  Google Scholar 

  32. M. Broquier, S. Soorkia, G. Grégoire, Phys. Chem. Chem. Phys. 17, 25854 (2015)

    Article  Google Scholar 

  33. TURBOMOLE V7.1, A Development of University Karlsruhe Forschungszentrum Karlsruhe GmbH, 1989–2007. TURBOMOLE GmbH, since 2007. https://www.turbomole.com

  34. R. Ahlrichs, Phys. Chem. Chem. Phys. 6, 5119 (2004)

    Article  Google Scholar 

  35. A. Köhn, C. Hättig, J. Chem. Phys. 119, 5021 (2003)

    Article  ADS  Google Scholar 

  36. R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys. 96, 6796 (1992)

    Article  ADS  Google Scholar 

  37. T. Schwabe, S. Grimme, Acc. Chem. Res. 41, 569 (2008)

    Article  Google Scholar 

  38. A. Hellweg, S.A. Grün, C. Hättig, Phys. Chem. Chem. Phys. 10, 4119 (2008)

    Article  Google Scholar 

  39. C.M. Western, J. Quant. Spectrosc. Radiat. Transf. 186, 221 (2017)

    Article  ADS  Google Scholar 

  40. L. Sadr-Arani, P. Mignon, H. Chermette, T. Douki, Chem. Phys. Lett. 605–606, 108 (2014)

    Article  ADS  Google Scholar 

  41. E. Rossich Molina, J.-Y. Salpin, R. Spezia, E. Martínez-Núñez, Phys. Chem. Chem. Phys. 18, 14980 (2016)

    Article  Google Scholar 

  42. Y. Tsuchiya, T. Tamura, M. Fujii, M. Ito, J. Phys. Chem. 92, 1760 (1988)

    Article  Google Scholar 

  43. A. Leś, L. Adamowicz, M.J. Nowak, L. Lapinski, Spectrochim. Acta Part A Mol. Spectrosc. 48, 1385 (1992)

    Google Scholar 

  44. H. Kang, C. Jouvet, C. Dedonder-Lardeux, S. Martrenchard, C. Charrière, G. Grégoire, C. Desfrançois, J.P. Schermann, M. Barat, J.A. Fayeton, J. Chem. Phys. 122, 84307 (2005)

    Article  Google Scholar 

  45. M. Schreiber, M.R. Silva-Junior, S.P.A. Sauer, W. Thiel, J. Chem. Phys. 128, 134110 (2008)

    Article  ADS  Google Scholar 

  46. S.J. Strickler, R.A. Berg, J. Chem. Phys. 37, 814 (1962)

    Article  ADS  Google Scholar 

  47. T.J. Penfold, E. Gindensperger, C. Daniel, C.M. Marian, Chem. Rev. 118, 6975 (2018)

    Article  Google Scholar 

  48. M. Barbatti, J. Paier, H. Lischka, J. Chem. Phys. 121, 11614 (2004)

    Article  ADS  Google Scholar 

  49. K.R. Yang, X. Xu, J. Zheng, D.G. Truhlar, Chem. Sci. 5, 4661 (2014)

    Article  Google Scholar 

  50. K.C. Woo, D.H. Kang, S.K. Kim, J. Am. Chem. Soc. 139, 17152 (2017)

    Article  Google Scholar 

  51. M. Pitzer, C. Ozga, C. Küstner-Wetekam, P. Reiß, A. Knie, A. Ehresmann, T. Jahnke, A. Giuliani, L. Nahon, J. Phys. Chem. A 123, 3551 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of the computing facility MésoLUM of the LUMAT federation (FRLUMAT 2764) and MAGI of the University Paris 13.

Author information

Authors and Affiliations

Authors

Contributions

All authors conducted experiments, performed data analysis. GG performed calculations and wrote the manuscript.

Corresponding author

Correspondence to Gilles Grégoire.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 488 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezalay, J., Broquier, M., Soorkia, S. et al. Excited state dynamics of protonated keto uracil: intersystem crossing pathways in competition. Eur. Phys. J. D 75, 17 (2021). https://doi.org/10.1140/epjd/s10053-020-00017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00017-z

Navigation