Skip to main content
Log in

Optimizing direct laser-driven electron acceleration and energy gain at ELI-NP

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study and discuss electron acceleration in vacuum interacting with fundamental Gaussian pulses using specific parameters relevant for the multi-PW femtosecond lasers at ELI-NP. Taking into account the characteristic properties of both linearly and circularly polarized Gaussian beams near focus we have calculated the optimal values of beam waist leading to the most energetic electrons for given laser power. The optimal beam waist at full width at half maximum correspond to few tens of wavelengths, Δw0 = {13, 23, 41}λ0, for increasing laser power P0 = {0.1, 1, 10} PW. Using these optimal values we found an average energy gain of a few MeV and highest-energy electrons of about 160 MeV in full-pulse interactions and in the GeV range in case of half-pulse interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Shimoda, Appl. Opt. 1, 33 (1962)

    Article  ADS  Google Scholar 

  2. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  3. M.O. Scully, M.S. Zubairy, Phys. Rev. A 44, 2656 (1991)

    Article  ADS  Google Scholar 

  4. E.S. Sarachik, G.T. Schappert, Phys. Rev. D 10, 2738 (1970)

    Article  ADS  Google Scholar 

  5. G. Malka, E. Lefebvre, J.L. Miquel, Phys. Rev. Lett. 78, 3314 (1997)

    Article  ADS  Google Scholar 

  6. C.I. Moore, J.P. Knauer, D.D. Meyerhofer, Phys. Rev. Lett. 74, 2439 (1995)

    Article  ADS  Google Scholar 

  7. W.P. Leemans, B. Nagler, A.J. Gonsalves, C. Tóth, K. Nakamura, C.G.R. Geddes, E. Esarey, C.B. Schroeder, S.M. Hooker, Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  8. W.P. Leemans, A.J. Gonsalves, H.S. Mao, et al., Phys. Rev. Lett. 113, 245002 (2014)

    Article  ADS  Google Scholar 

  9. A. Pukhov, Z.-M. Sheng, J. Meyerter-Vehn, Phys. Plasmas 6, 2847 (1999)

    Article  ADS  Google Scholar 

  10. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  11. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  12. A.V. Arefiev, B.N. Breizman, M. Schollmeier, V.N. Khudik, Phys. Rev. Lett. 108, 145004 (2012)

    Article  ADS  Google Scholar 

  13. A.V. Arefiev, V.N. Khudik, A.P.L. Robinson, G. Shvets, L. Willingale, M. Schollmeier, Phys. Plasmas 23, 056704 (2016)

    Article  ADS  Google Scholar 

  14. T. Wang, V. Khudik, A. Arefiev, G. Shvets, Phys. Plasmas 26, 083101 (2019)

    Article  ADS  Google Scholar 

  15. K.A. Tanaka, K.M. Spohr, D.L. Balabanski, S. Balascuta, L. Capponi, M.O. Cernaianu, M. Cuciuc, A. Cucoanes, I. Dancus, A. Dhal, B. Diaconescu, D. Doria, P. Ghenuche, D.G. Ghita, S. Kisyov, V. Nastasa, J.F. Ong, F. Rotaru, D. Sangwan, P.-A. Söderström, D. Stutman, G. Suliman, O. Tesileanu, L. Tudor, N. Tsoneva, C.A. Ur, D. Ursescu, N.V. Zamfir, Matter Radiat. Extremes 5, 024402 (2020)

    Article  Google Scholar 

  16. F. He, W. Yu, P. Lu, H. Xu, L. Qian, B. Shen, X. Yuan, R. Li, Z. Xu, Phys. Rev. E 68, 046407 (2003)

    Article  ADS  Google Scholar 

  17. H. Feng, Y. Wei, L. Peixiang, X. Han, Plasma Sci. Technol. 6, 2492 (2004)

    Article  Google Scholar 

  18. M. Kalashnikov, A. Andreev, K. Ivanov, A. Galkin, V. Korobkin, M. Romanovsky, O. Shiryaev, M. Schnuerer, J. Braenzel, V. Trofimov, Laser Part. Beams 33, 361 (2015)

    Article  ADS  Google Scholar 

  19. E. Esarey, P. Sprangle, J. Krall, Phys. Rev. E 52, 5443 (1995)

    Article  ADS  Google Scholar 

  20. F.V. Hartemann, S.N. Fochs, G.P. Le Sage, N.C. Luhmann Jr., J.G. Woodworth, M.D. Perry, Y.J. Chen, A.K. Kerman, Phys. Rev. E 51, 4833 (1995)

    Article  ADS  Google Scholar 

  21. F.V. Hartemann, J.R. Van Meter, A.L. Troha, E.C. Landahl, N.C. Luhmann Jr., J.G. Woodworth, H.A. Baldis, A. Gupta, A.K. Kerman, Phys. Rev. E 58, 5001 (1998)

    Article  ADS  Google Scholar 

  22. B. Quesnel, P. Mora, Phys. Rev. E 58, 3791 (1998)

    Article  Google Scholar 

  23. G.V. Stupakov, M.S. Zolotorev, Phys. Rev. Lett. 86, 5274 (2000)

    Article  ADS  Google Scholar 

  24. P.X. Wang, Y.K. Ho, X.Q. Yuan, Q. Kong, N. Cao, L. Shao, A.M. Sessler, E. Esarey, E. Moshkovich, Y. Nishida, N. Yugami, H. Ito, J.X. Wang, S. Scheid, J. Appl. Phys. 91, 856 (2002)

    Article  ADS  Google Scholar 

  25. A. Maltsev, T. Ditmire, Phys. Rev. Lett. 90, 053002 (2002)

    Article  ADS  Google Scholar 

  26. Y.I. Salamin, C.H. Keitel, Phys. Rev. Lett. 88, 095005 (2002)

    Article  ADS  Google Scholar 

  27. I.Y. Dodin, N.J. Fisch, Phys. Rev. E 68, 056402 (2003)

    Article  ADS  Google Scholar 

  28. H. Feng, Y. Wei, L. Peixiang, X. Han, S. Baifei, L. Ruxin, X. Zhizhan, Plasma Sci. Technol. 7, 2968 (2005)

    Article  Google Scholar 

  29. Y.I. Salamin, Phys. Rev. A 73, 043402 (2006)

    Article  ADS  Google Scholar 

  30. D.N. Gupta, N. Kant, D.E. Kim, H. Suk, Phys. Lett. A 368, 402 (2007)

    Article  ADS  Google Scholar 

  31. A.L. Galkin, V.V. Korobkin, MYu Romanovsky, O.B. Shiryaev, Phys. Plasmas 15, 023104 (2008)

    Article  ADS  Google Scholar 

  32. Y.I. Salamin, Z. Harman, C.H. Keitel, Phys. Rev. Lett. 100, 155004 (2008)

    Article  ADS  Google Scholar 

  33. Z. Harman, Y.I. Salamin, B.J. Galow, C.H. Keitel, Phys. Rev. A 84, 053814 (2011)

    Article  ADS  Google Scholar 

  34. P.-L. Fortin, M. Pieche, C. Varin, J. Phys. B: At. Mol. Opt. 43, 025401 (2010)

    Article  ADS  Google Scholar 

  35. A.P.L. Robinson, A.V. Arefiev, D. Neely, Phys. Rev. Lett. 111, 065002 (2013)

    Article  ADS  Google Scholar 

  36. H.S. Ghotra, N. Kant, Opt. Commun. 383, 169 (2017)

    Article  ADS  Google Scholar 

  37. N. Kant, J. Rajput, A. Singh, Eur. Phys. J. D 74, 142 (2020)

    Article  ADS  Google Scholar 

  38. J.D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley & Sons, New York, 1999)

  39. A.E. Siegman, Lasers, revised edition (University Science Books, 1986)

  40. P.F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propogation and Applications (Wiley-IEEE Press, 1998)

  41. Y.Y. Li, Y.J. Gu, Z. Zhu, X.F. Li, H.Y. Ban, Q. Kong, S. Kawata, Phys. Plasmas 18, 053104 (2011)

    Article  ADS  Google Scholar 

  42. L. Cicchitelli, H. Hora, R. Postle, Phys. Rev. A 41, 3727 (1990)

    Article  ADS  Google Scholar 

  43. M. Rezaei-Pandari, M. Akhyani, F. Jahangiri, A.R. Niknam, R. Massudi, Opt. Commun. 429, 46 (2018)

    Article  ADS  Google Scholar 

  44. M. Thévenet, A. Leblanc, S. Kahaly, et al., Nat. Phys. 12, 355 (2016)

    Article  Google Scholar 

  45. M. Wen, Y.I. Salamin, C.H. Keitel, Phys. Rev. Appl. 13, 034001 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etele Molnár.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnár, E., Stutman, D. & Ticoş, C. Optimizing direct laser-driven electron acceleration and energy gain at ELI-NP. Eur. Phys. J. D 74, 229 (2020). https://doi.org/10.1140/epjd/e2020-10423-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10423-x

Keywords

Navigation