Skip to main content
Log in

Protecting the entropic uncertainty lower bound in Markovian and non-Markovian environment via additional qubits

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The uncertainty principle is an important principle in quantum theory. Based on this principle, it is impossible to predict the measurement outcomes of two incompatible observables, simultaneously. The uncertainty principle basically is expressed in terms of the standard deviation of the measured observables. In quantum information theory, it is shown that the uncertainty principle can be expressed by Shannon’s entropy. The entopic uncertainty lower bound can be altered by considering a particle as the quantum memory which is correlated with the measured particle. We assume that the quantum memory is an open system. We also select the quantum memory from N qubit which interact with common reservoir. In this work we investigate the effects of the number of additional qubits in reservoir on entropic uncertainty lower bound. We conclude that the entropic uncertainty lower bound can be protected from decoherence by increasing the number of additional qubit in reservoir.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg, Z. Phys. 43, 173 (1927)

    Article  ADS  Google Scholar 

  2. E.H. Kennard, Z. Phys. 44, 326 (1927)

    Article  ADS  Google Scholar 

  3. H.P. Robertson, Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  4. E. Schrödinger, Proc. Pruss. Acad. Sci. XIX, 296, (1930).

    Google Scholar 

  5. K. Kraus, Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Maassen, J.B.M. Uffink, Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  8. Y. Huang, Phys. Rev. A 82, 012335 (2010)

    Article  ADS  Google Scholar 

  9. R. Prevedel, D.R. Hamel, R. Colbeck, K. Fisher, K.J. Resch, Nat. Phys. 7, 757 (2011)

    Article  Google Scholar 

  10. L. Chuan-Feng, J.-S. Xu, X.-Y. Xu, K. Li, G.-C. Guo, Nat. Phys. 7, 752 (2011)

    Article  Google Scholar 

  11. M. Tomamichel, C.C.W. Lim, N. Gisin, R. Renner, Nature Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  12. N.H.Y. Ng, M. Berta, S. Wehner, Phys. Rev. A 86, 042315 (2012)

    Article  ADS  Google Scholar 

  13. A.K. Pati, M.M. Wilde, A.R. Usha Devi, A.K. Rajagopal, Sudha, Phys. Rev. A 86, 042105 (2012)

    Article  ADS  Google Scholar 

  14. T. Pramanik, P. Chowdhury, A.S. Majumdar, Phys. Rev. Lett. 110, 020402 (2013)

    Article  ADS  Google Scholar 

  15. P.J. Coles, M. Piani, Phys. Rev. A 89, 022112 (2014)

    Article  ADS  Google Scholar 

  16. S. Liu, L.-Z. Mu, H. Fan, Phys. Rev. A 91, 042133 (2015)

    Article  ADS  Google Scholar 

  17. J. Zhang, Y. Zhang, Yu C-s, Sci. Rep. 5, 11701 (2015)

    Article  ADS  Google Scholar 

  18. T. Pramanik, S. Mal, A.S. Majumdar, Quantum Inf. Process. 15, 981 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Adabi, S. Salimi, S. Haseli, Phy. Rev. A 93, 062123 (2016)

    Article  ADS  Google Scholar 

  20. F. Adabi, S. Salimi, S. Haseli, EPL 115, 60004 (2016)

    Article  ADS  Google Scholar 

  21. H. Dolatkhah, S. Haseli, S. Salimi, S.A. Khorashad, Quantum Inf. Process. 18, 13 (2019)

    Article  ADS  Google Scholar 

  22. J.-L. Huang, W.-C. Gan, Y. Xiao, F.-W. Shu, M.-H. Yung, Eur. Phys. J. C 78, 545 (2018)

    Article  ADS  Google Scholar 

  23. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  24. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  25. N. Behzadi, B. Ahansaz, E. Faizi, Eur. Phys. J. D 3, 80294 (2017)

    Google Scholar 

  26. N. Behzadi, B. Ahansaz, A. Ektesabi, E. Faizi, Phys. Rev. A 95, 052121 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroush Haseli.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haseli, S., Ahmadi, F. Protecting the entropic uncertainty lower bound in Markovian and non-Markovian environment via additional qubits. Eur. Phys. J. D 74, 170 (2020). https://doi.org/10.1140/epjd/e2020-10110-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10110-0

Keywords

Navigation