Skip to main content
Log in

Quantum noise reduction techniques in KAGRA

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

KAGRA is the first large-scale gravitational-wave detector with cryogenic test masses. Its target sensitivity is limited mostly by quantum noise in the observation frequency band owing to the remarkable reduction of thermal noise at cryogenic temperatures. It is thus essential to reduce quantum noise, and KAGRA is designed to implement two quantum noise reduction techniques. KAGRA has already started considering an upgrade plan, in which a few more new quantum noise reduction techniques will be incorporated. In this article, we report the currently implemented quantum noise reduction techniques for KAGRA and those that will be implemented in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Somiya(for KAGRA Collaboration), Class. Quantum Grav. 29, 124007 (2012)

    Article  ADS  Google Scholar 

  2. W.G. Unruh, in Quantum optics, experimental gravitation, and measurement theory, edited byP. Meystre, M.O. Scully (Plenum Press, New York, 1982), p. 647

  3. A. Buonanno, Y. Chen, Phys. Rev. D 64, 042006 (2001)

    Article  ADS  Google Scholar 

  4. H.J. Kimble, Y. Levin, A.B. Matsko, K.S. Thorne, S.P. Vyatchanin, Phys. Rev. D 65, 022002 (2001)

    Article  ADS  Google Scholar 

  5. V.B. Braginsky, F.Ya Khalili, Rev. Mod. Phys. 68, 1 (1996)

    Article  ADS  Google Scholar 

  6. J. Mizuno, K.A. Strain, P.G. Nelson, J.M. Chen, R. Schilling, A. Rüdiger, W. Winkler, K. Danzmann, Phys. Lett. A 175, 273 (1993)

    Article  ADS  Google Scholar 

  7. A. Thüring, R. Schnabel, H. Lück, K. Danzmann, Opt. Lett. 32, 985 (2007)

    Article  ADS  Google Scholar 

  8. H. Miao, H. Yang, R.X. Adhikari, Y. Chen, Class. Quantum Grav. 31, 165010 (2014)

    Article  ADS  Google Scholar 

  9. D. Martynov, et al., Phys. Rev. D 99, 102004 (2019)

    Article  ADS  Google Scholar 

  10. KAGRA Future Planning Committee, KAGRA FPC White Paper, JGW-M1909590-v11, 2019

  11. K. Somiya, Y. Chen, S. Kawamura, N. Mio, Phys. Rev. D 73, 122005 (2006)

    Article  ADS  Google Scholar 

  12. A. Kumeta, C. Bond, K. Somiya, Opt. Rev. 22, 149 (2015)

    Article  Google Scholar 

  13. K. Yano, Design study and prototype experiment for the KAGRA output mode-cleaner, master’s thesis, Tokyo Institute of Technology, 2016

  14. P. Fritschel, M. Evans, V. Frolov, Opt. Exp. 22, 4224 (2014)

    Article  ADS  Google Scholar 

  15. S. Ueda, N. Saito, D. Friedrich, Y. Aso, K. Somiya, Class. Quantum Grav. 31, 095003 (2014)

    Article  ADS  Google Scholar 

  16. K. Yamamoto, et al., Class. Quantum Grav. 36, 205009 (2019)

    Article  ADS  Google Scholar 

  17. Latest Estimated Sensitivity of KAGRA (v201708), JGW-T1707038-v9 (2017).

  18. B.P. Abbott, et al. (VIRGO, KAGRA, LIGO Scientific), Living Rev. Relativ. 21, 3 (2018)

    Article  ADS  Google Scholar 

  19. LCGT Collaboration, LCGT Design Document ver. 3, JGW-T0400030-v4, 2009

  20. P. Willems (for the LIGO Scientific Collaboration), in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest (2019), Paper AOThA5

  21. J.A. Sidles, D. Sigg, Phys. Lett. A 354, 167 (2006)

    Article  ADS  Google Scholar 

  22. V.B. Braginsky, S.E. Strigin, S.P. Vyatchanin, Phys. Lett. A 287, 331 (2001)

    Article  ADS  Google Scholar 

  23. J. Abadie, et al., Nat. Phys. 7, 962 (2011)

    Article  Google Scholar 

  24. J. Aasi, et al., Nat. Photonics 7, 613 (2013)

    Article  ADS  Google Scholar 

  25. E. Capocasa, et al., Phys. Rev. D 98, 022010 (2018)

    Article  ADS  Google Scholar 

  26. Y. Ma, et al., Nat. Phys. 13, 776 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Somiya.

Additional information

Contribution to the Topical Issue “Quantum Technologies for Gravitational Physics”, edited by Tanja Mehlstäubler, Yanbei Chen, Guglielmo M. Tino, Hsien-Chi Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somiya, K. Quantum noise reduction techniques in KAGRA. Eur. Phys. J. D 74, 10 (2020). https://doi.org/10.1140/epjd/e2019-100471-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100471-2

Navigation