Skip to main content
Log in

Tunable nonlinear measurement of microwave electric fields with a dressed-state analysis

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A nonlinear absorption spectrum is proposed for measuring microwave electric fields with tunable sensitivity using electromagnetically induced transparency (EIT) in Rydberg atoms. Interacting dark resonances could enhance the nonlinear absorption, which shows a linear relationship with the microwave field (MW) strength. Compared with the linear case, the nonlinear measurement of MW field improves spectrum resolution by about one order of magnitude, the nonlinearity increases the EIT peak values by about two orders of magnitude, moreover the probe sensitivity could be improved by ten times from simulation. It is found that increasing the ratio of two coupling fields can improve probe sensitivity. The maximum probe sensitivity is predicted and explained. The above results can be well understood with the aid of the dressed-state theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chen, C. Qiu, S. Chen, J. Guo, L. Chen, Z. Ou, W. Zhang, Phys. Rev. Lett. 115, 043602 (2015).

    ADS  Google Scholar 

  2. P. Chen, C. Shu, X. Guo, M. Loy, S. Du, Phys. Rev. Lett. 114, 010401 (2015).

    ADS  Google Scholar 

  3. C. Degen, F. Reinhard, P. Cappellaro, Rev. Mod. Phys. 89, 035002 (2017).

    ADS  Google Scholar 

  4. K. Zhang, F. Bariani, Y. Dong, W. Zhang, P. Meystre, Phys. Rev. Lett. 114, 113601 (2015).

    ADS  Google Scholar 

  5. C.L. Holloway, J.A. Gordon, S. Jefferts, A. Schwarzkopf, D.A. Anderson, S.A. Miller, N. Thaicharoen, G. Raithel, IEEE Trans. Antennas Propag. 62, 6169 (2014).

    ADS  Google Scholar 

  6. J. Che, W. Jiang, G. Lan, S. Wang, S. Xiang, Y. Zhang, Opt. Commun. 433, 150 (2019).

    ADS  Google Scholar 

  7. J.L. Hall, Rev. Mod. Phys. 78, 7279 (2006).

    Google Scholar 

  8. D.J. Lee, J.Y. Kwon, N.W. Kang, J.F. Whitaker, Opt. Express 19, 14437 (2011).

    ADS  Google Scholar 

  9. S.E. Harris, Phys. Today 50, 36 (1997).

    Google Scholar 

  10. Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M. Miri, D. Christodoulides, B. He, Y. Zhang, M. Xiao, Phys. Rev. Lett. 117, 123601 (2017).

    ADS  Google Scholar 

  11. K. Xia, F. Nori, M. Xiao, Phys. Rev. Lett. 121, 203602 (2018).

    ADS  Google Scholar 

  12. S.C. Zhang, Y.Q. Hu, G.W. Lin, Y.P. Niu, K.Y. Xia, J.B. Gong, S.Q. Gong, Nat. Photonics 12, 755 (2018).

    Google Scholar 

  13. J.A. Sedlacek, A. Schwettmann, H. Kubler, R. Low, T. Pfau, J.P. Shaffer, Nat. Phys. 8, 819 (2012).

    Google Scholar 

  14. M.G. Bason, M. Tanasittikosol, A. Sargyan, A.K. Mohapatra, D. Sarkisyan, P.M. Potvliege, C.S. Adams, New J. Phys. 12, 065015 (2010).

    ADS  Google Scholar 

  15. J.A. Sedlacek, A. Schwettmann, H. Kubler, R. Low, T. Pfau, J.P. Shaffer, Phys. Rev. Lett. 111, 063001 (2013).

    ADS  Google Scholar 

  16. D.A. Anderson, S.A. Miller, G. Raithel, J.A. Gordon, M.L. Butler, C.L. Holloway, Phys. Rev. Appl. 5, 034003 (2016).

    ADS  Google Scholar 

  17. L. Wang, H. Zhang, L. Zhang, G. Raithel, J. Zhao, S. Jia, Phys. Rev. A 92, 033619 (2015).

    ADS  Google Scholar 

  18. H. Busche, P. Huillery, S. Ball, T. Ilieva, M. Jones, C. Adams, Nat. Phys. 13, 665 (2017).

    Google Scholar 

  19. H.Q. Fan, S. Kumar, J.T. Sheng, J.P. Shaffer, Phys. Rev. Appl. 4, 044015 (2015).

    ADS  Google Scholar 

  20. M.T. Simons, J.A. Gordon, C.L. Holloway, D.A. Anderson, S.A. Miler, G. Raithel, Appl. Phys. Lett. 108, 174101 (2016).

    ADS  Google Scholar 

  21. S. Kümar, H.Q. Fan, H. Kubler, A.J. Jahangiri, J.P. Shaffer, Opt. Express 25, 8625 (2017).

    ADS  Google Scholar 

  22. Y.P. Niu, S.Q. Gong, R.X. Li, Z.Z. Xu, X.Y. Liang, Opt. Lett. 30, 3371 (2005).

    ADS  Google Scholar 

  23. Y.H. Han, J. Xiao, Y. Liu, Ch Zhang, H. Wang, M. Xiao, K. Peng, Phys. Rev. A 77, 023824 (2008).

    ADS  Google Scholar 

  24. L.D. Zhang, T.N. Dey, J. Evers, Phys. Rev. A 87, 043842 (2013).

    ADS  Google Scholar 

  25. S. Evangelou, V. Yannopapas, E. Paspalakis, J. Mod. Opt. 61, 1458 (2014).

    ADS  Google Scholar 

  26. D. Stefanatos, E. Paspalakis, Opt. Lett. 43, 3313 (2018).

    ADS  Google Scholar 

  27. C. Zhu, C. Huang, G. Huang, Eur. Phys. J. D 56, 231 (2010).

    ADS  Google Scholar 

  28. Y. Peng, A. Yang, Y. Xu, P. Wang, Y. Yu, H. Guo, T. Ren, Sci. Rep. 6, 38251 (2016).

    ADS  Google Scholar 

  29. Y. Peng, A. Yang, L. Jiang, L. Meng, J. Liu, Eur. Phys. J. D 68, 152 (2014).

    ADS  Google Scholar 

  30. G. Lin, Y. Qi, X. Lin, Y. Niu, S. Gong, Phys. Rev. A 92, 043842 (2015).

    ADS  Google Scholar 

  31. Y. Peng, A. Yang, B. Chen, L. Li, S. Liu, H. Guo, Appl. Phys. Lett. 109, 141101 (2016).

    ADS  Google Scholar 

  32. C. Li, K. Wang, J. Wang, J. Zhang, Y. Peng, J. Shandong Uni. Sci. Technol. 37, 93 (2018).

    Google Scholar 

  33. G.W. Lin, S.C. Zhang, Y.Q. Hu, Y.P. Niu, Phys. Rev. Lett 123, 033902 (2019).

    ADS  Google Scholar 

  34. M. Scully, M. Zubairy, Quantum Optics (Cambridge University, 1997).

  35. X. Li, Q. Zhao, J. Geom. Phys. 121, 123 (2017).

    ADS  MathSciNet  Google Scholar 

  36. H. Schmidt, A. Imamoglu, Opt. Lett. 21, 1936 (1996).

    ADS  Google Scholar 

  37. C. Ottaviani, S. Rebic, D. Vitali, P. Tombesi, Eur. Phys. J. D 40, 281 (2006).

    ADS  Google Scholar 

  38. Y. Niu, S.Q. Gong, Phys. Rev. A. 73, 053811 (2006).

    ADS  Google Scholar 

  39. Y. Peng, Z. Zhang, X. Wang, S. Liu, A. Yang, X. Wang, Opt. Quantum Electron. 50, 311 (2018).

    Google Scholar 

  40. A.K. Mohapatra, T.R. Jackon, C.S. Adams, Phys. Rev. Lett. 98, 113003 (2007).

    ADS  Google Scholar 

  41. C.L. Holloway, M.T. Simons, J.A. Gordon, A. Dienstfrey, D.A. Anderson, G. Raithel, J. Appl. Phys. 121, 233106 (2017).

    ADS  Google Scholar 

  42. A. Tauschinsky, R. Newell, H.B. van Linden van den Heuvell, R.J.C. Spreeuw, Phys. Rev. A. 87, 042522 (2013).

    ADS  Google Scholar 

  43. M.D. Lukin, S.F. Yelin, M. Fleischhauer, M.O. Scully, Phys. Rev. A 60, 3225 (1999).

    ADS  Google Scholar 

  44. L. Zhang, F. Zhou, Y. Niu, J. Zhang, S. Gong, Opt. Commun. 284, 5697 (2011).

    ADS  Google Scholar 

  45. L. Zhang, Y. Jiang, R. Wan, S. Tian, B. Shang, X. Zhang, J. Gao, Y. Niu, S. Gong, J. Phys. B 44, 135505 (2011).

    ADS  Google Scholar 

  46. D. Yan, Y. Liu, Q. Bao, C. Fu, J. Wu, Phy. Rev. A 86, 023828 (2012).

    ADS  Google Scholar 

  47. M. Yan, E.G. Rickey, Y. Zhu, Phys. Rev. A 64, 043807 (2001).

    ADS  Google Scholar 

  48. G.S. Agarwal, W. Harshawardhan, Phys. Rev. Lett. 77, 1039 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yandong Peng, Qingtian Zeng or Yuxia Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Zhang, Z., Wang, J. et al. Tunable nonlinear measurement of microwave electric fields with a dressed-state analysis. Eur. Phys. J. D 73, 222 (2019). https://doi.org/10.1140/epjd/e2019-100154-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100154-0

Keywords

Navigation