Skip to main content
Log in

Effect of initial system–environment correlations with spin environments

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Understanding the dynamics of open quantum systems is a highly important task for the implementation of emerging quantum technologies. To make the problem tractable theoretically, it is common to neglect initial system–environment correlations. However, this assumption is questionable in situations where the system is interacting strongly with the environment. In particular, the system state preparation can then influence the dynamics of the system via the system–environment correlations. To gain insight into the effect of these correlations, we solve an exactly solvable model of a quantum spin interacting with a spin environment both with and without initial correlations for arbitrary system–environment coupling strengths. We show that the effect of the system state preparation may or may not be significant in the strong system–environment coupling regime at low temperatures. We also study the dynamics of the entanglement between two spins interacting with a common spin environment with and without initial system–environment correlations to demonstrate that the correlations can play a significant role in the dynamics of two-qubit systems as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-P. Breuer, F. Petruccione The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)

  2. U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 2008)

  3. K. Modi, Open Syst. Inf. Dyn. 18, 253 (2011)

    Article  MathSciNet  Google Scholar 

  4. V. Hakim, V. Ambegaokar, Phys. Rev. A 32, 423 (1985)

    Article  ADS  Google Scholar 

  5. F. Haake, R. Reibold, Phys. Rev. A 32, 2462 (1985)

    Article  ADS  Google Scholar 

  6. H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. C.M. Smith, A.O. Caldeira, Phys. Rev. A 41, 3103 (1990)

    Article  ADS  Google Scholar 

  8. R. Karrlein, H. Grabert, Phys. Rev. E 55, 153 (1997)

    Article  ADS  Google Scholar 

  9. L. Dávila Romero, J. Pablo Paz, Phys. Rev. A 55, 4070 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  10. E. Lutz, Phys. Rev. A 67, 022109 (2003)

    Article  ADS  Google Scholar 

  11. S. Banerjee, R. Ghosh, Phys. Rev. E 67, 056120 (2003)

    Article  ADS  Google Scholar 

  12. N.G. van Kampen, J. Stat. Phys. 115, 1057 (2004)

    Article  ADS  Google Scholar 

  13. M. Ban, Phys. Rev. A 80, 064103 (2009)

    Article  ADS  Google Scholar 

  14. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009)

    Article  ADS  Google Scholar 

  15. C. Uchiyama, M. Aihara, Phys. Rev. A 82, 044104 (2010)

    Article  ADS  Google Scholar 

  16. A.G. Dijkstra, Y. Tanimura, Phys. Rev. Lett. 104, 250401 (2010)

    Article  ADS  Google Scholar 

  17. A. Smirne, H.-P. Breuer, J. Piilo, B. Vacchini, Phys. Rev. A 82, 062114 (2010)

    Article  ADS  Google Scholar 

  18. J. Dajka, J. Łuczka, Phys. Rev. A 82, 012341 (2010)

    Article  ADS  Google Scholar 

  19. Y.-J. Zhang, X.-B. Zou, Y.-J. Xia, G.-C. Guo, Phys. Rev. A 82, 022108 (2010)

    Article  ADS  Google Scholar 

  20. H.-T. Tan, W.-M. Zhang, Phys. Rev. A 83, 032102 (2011)

    Article  ADS  Google Scholar 

  21. C.K. Lee, J. Cao, J. Gong, Phys. Rev. E 86, 021109 (2012)

    Article  ADS  Google Scholar 

  22. V.G. Morozov, S. Mathey, G. Röpke, Phys. Rev. A 85, 022101 (2012)

    Article  ADS  Google Scholar 

  23. V. Semin, I. Sinayskiy, F. Petruccione, Phys. Rev. A 86, 062114 (2012)

    Article  ADS  Google Scholar 

  24. E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, G.-C. Guo, Phys. Rev. Lett. 108, 210402 (2012)

    Article  ADS  Google Scholar 

  25. A.Z. Chaudhry, J. Gong, Phys. Rev. A 87, 012129 (2013)

    Article  ADS  Google Scholar 

  26. A.Z. Chaudhry, J. Gong, Phys. Rev. A 88, 052107 (2013)

    Article  ADS  Google Scholar 

  27. A.Z. Chaudhry, J. Gong, Can. J. Chem. 92, 119 (2013)

    Article  Google Scholar 

  28. J. Reina, C. Susa, F. Fanchini, Sci. Rep. 4, 7443 (2014)

    Article  ADS  Google Scholar 

  29. F. Buscemi, Phys. Rev. Lett. 113, 140502 (2014)

    Article  ADS  Google Scholar 

  30. Y.-J. Zhang, W. Han, Y.-J. Xia, Y.-M. Yu, H. Fan, Sci. Rep. 5, 13359 (2015)

    Article  ADS  Google Scholar 

  31. C.-C. Chen, H.-S. Goan, Phys. Rev. A 93, 032113 (2016)

    Article  ADS  Google Scholar 

  32. I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017)

    Article  ADS  Google Scholar 

  33. J.C. Halimeh, I. de Vega, Phys. Rev. A 95, 052108 (2017)

    Article  ADS  Google Scholar 

  34. S. Kitajima, M. Ban, F. Shibata, J. Phys. A: Math. Theor. 50, 125303 (2017)

    Article  ADS  Google Scholar 

  35. M. Buser, J. Cerrillo, G. Schaller, J. Cao, Phys. Rev. A 96, 062122 (2017)

    Article  ADS  Google Scholar 

  36. F.M. Cucchietti, J.P. Paz, W.H. Zurek, Phys. Rev. A 72, 052113 (2005)

    Article  ADS  Google Scholar 

  37. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  38. J. Eberly, T. Yu, Science 316, 555 (2007)

    Article  Google Scholar 

  39. T. Yu, J.H. Eberly, Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  40. C. López, G. Romero, F. Lastra, E. Solano, J. Retamal, Phys. Rev. Lett. 101, 080503 (2008)

    Article  Google Scholar 

  41. E. Pollak, J. Shao, D.H. Zhang, Phys. Rev. E 77, 021107 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. N.J. Cerf, C. Adami, Phys. Rev. Lett. 79, 5194 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  43. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Zaman Chaudhry.

Additional information

Contribution to the Topical Issue “Quantum Correlations”, edited by Marco Genovese, Vahid Karimipour, Sergei Kulik, and Olivier Pfister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, M., Chaudhry, A.Z. Effect of initial system–environment correlations with spin environments. Eur. Phys. J. D 73, 16 (2019). https://doi.org/10.1140/epjd/e2018-90416-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90416-0

Navigation