Skip to main content
Log in

High-intensity isolated attosecond X-ray pulse generation by using low-intensity ultraviolet–mid-infrared laser beam

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

An efficient approach to obtain the high-intensity isolated attosecond X-ray pulse has been proposed and studied by using the low-intensity ultraviolet–mid-infrared (UV–MIR) laser beam. It is found that with the superposition of the UV–MIR beam, not only the harmonic efficiency can be enhanced, but also the harmonic cutoff can be extended to the X-ray region. In detail, the results can be separated into two parts. Firstly, when the fundamental field is chosen to be the linearly polarization MIR field, the enhancement of the harmonic efficiency is sensitive to the pulse duration and the delay time of the UV pulse. Moreover, the enhancement of the harmonic spectrum is coming from the multiple harmonic emission peaks (HEPs). Secondly, when the fundamental field is chosen to be the polarization gating two circularly polarization MIR fields, the enhancement of the harmonic efficiency is independent on the pulse duration and the delay time of the UV pulse, which is much better for experimental realization. Moreover, the enhancement of the harmonic spectrum is nearly coming from the single HEP. Further, with the introduction of the unipolar pulse, the harmonic cutoff can be further extended and some sub-40 as single X-ray pulses with the intensity enhancement of 450 dB can be obtained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  2. H.J. Wöner, J.B. Bertrand, D.V. Kartashov, P.B. Corkum, D.M. Villeneuve, Nature 466, 604 (2010)

    Article  ADS  Google Scholar 

  3. O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature 460, 972 (2009)

    Article  ADS  Google Scholar 

  4. K.J. Yuan, A.D. Bandrauk, Phys. Rev. Lett. 110, 023003 (2013)

    Article  ADS  Google Scholar 

  5. E. Neyra, F. Videla, J.A. Perez-Hernandez, M.F. Ciappina, L. Roso, G.A. Torchia, Eur. Phys. J. D 70, 243 (2016)

    Article  ADS  Google Scholar 

  6. D.A. Telnov, J. Heslar, S.I. Chu, Phys. Rev. A 95, 043425 (2017)

    Article  ADS  Google Scholar 

  7. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  8. C. Jin, A.T. Le, C.D. Lin, Phys. Rev. A 79, 053413 (2009)

    Article  ADS  Google Scholar 

  9. Y. Mairesse, A.D. Bohan, L.J. Frasinski, H. Merdji, L.C. Dinu, P. Monchicourt, P. Breger, M. Kovaĉev, R. Taïeb, B. Carré, H.G. Muller, P. Agostini, P. Salières, Science 302, 1540 (2003)

    Article  ADS  Google Scholar 

  10. X. Cao, S. Jiang, C. Yu, Y. Wang, L. Bai, R. Lu, Opt. Express 22, 26153 (2014)

    Article  ADS  Google Scholar 

  11. N. Kaya, G. Kaya, J. Strohaber, A.A. Kolomenskii, H.A. Schuessler, Eur. Phys. J. D 70, 224 (2016)

    Article  ADS  Google Scholar 

  12. E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Science 320, 1614 (2008)

    Article  ADS  Google Scholar 

  13. L.Q. Feng, T.S. Chu, Phys. Rev. A 84, 053853 (2011)

    Article  ADS  Google Scholar 

  14. L.Q. Feng, T.S. Chu, J. Chem. Phys. 136, 054102 (2012)

    Article  ADS  Google Scholar 

  15. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S.D. Silvestri, M. Nisoli, Science 314, 443 (2006)

    Article  ADS  Google Scholar 

  16. J. Li, X.M. Ren, Y.C. Yin, Y. Cheng, E. Cunningham, Y. Wu, Z.H. Chang, Appl. Phys. Lett. 108, 231102 (2016)

    Article  ADS  Google Scholar 

  17. H. Mashiko, S. Gibertson, C.Q. Li, S.D. Khan, M.M. Shakya, E. Moon, Z.H. Chang, Phys. Rev. Lett. 100, 103906 (2008)

    Article  ADS  Google Scholar 

  18. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X.W. Wang, Z.H. Chang, Opt. Lett. 37, 3891 (2012)

    Article  ADS  Google Scholar 

  19. Z.N. Zeng, Y. Cheng, X.H. Song, R.X. Li, Z.Z. Xu, Phys. Rev. Lett. 98, 203901 (2007)

    Article  ADS  Google Scholar 

  20. R.F. Lu, H.X. He, Y.H. Guo, K.L. Han, J. Phys. B: At. Mol. Opt. Phys. 42, 225601 (2009)

    Article  ADS  Google Scholar 

  21. L.Q. Feng, Y.B. Duan, T.S. Chu, Ann. Phys. (Berlin) 525, 915 (2013)

    Article  ADS  Google Scholar 

  22. Q.B. Zhang, P.X. Lu, W.Y. Hong, Q. Liao, S.Y. Wang, Phys. Rev. A 80, 033405 (2009)

    Article  ADS  Google Scholar 

  23. S. Kim, J. Jin, Y.J. Kim, I.Y. Park, Y. Kim, S.W. Kim, Nature 453, 757 (2008)

    Article  ADS  Google Scholar 

  24. M. Sivis, M. Duwe, B. Abel, C. Ropers, Nat. Phys. 9, 304 (2013)

    Article  Google Scholar 

  25. I.Y. Park, S. Kim, J. Choi, D.H. Lee, Y.J. Kim, M.F. Kling, M.I. Stockman, S.-W. Kim, Nat. Photon. 5, 677 (2011)

    Article  ADS  Google Scholar 

  26. M.F. Ciappina et al., Rep. Prog. Phys. 80, 054401 (2017)

    Article  ADS  Google Scholar 

  27. J.A. Pérez-Hernández, M.F. Ciappina, M. Lewenstein, L. Roso, A. Zaïr, Phys. Rev. Lett. 110, 053001 (2013)

    Article  ADS  Google Scholar 

  28. M.F. Ciappina, T. Shaaran, M. Lewenstein, Ann. Phys. 525, 97 (2013)

    Article  Google Scholar 

  29. I. Yavuz, M.F. Ciappina, A. Chacón, Z. Altun, M.F. Kling, M. Lewenstein, Phys. Rev. A 93, 033404 (2016)

    Article  ADS  Google Scholar 

  30. L.Q. Feng, Phys. Rev. A 92, 053832 (2015)

    Article  ADS  Google Scholar 

  31. B.E. Schmidt, N. Thiré, M. Boivin, A. Laramé, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, F. Légaré, Nat. Commun. 5, 3643 (2014)

    Article  ADS  Google Scholar 

  32. Y. Chou, P.C. Li, T.S. Ho, S.I. Chu, Phys. Rev. A 91, 063408 (2015)

    Article  ADS  Google Scholar 

  33. S.M. Teichmann, F. Silva, S.L. Cousin, M. Hemmer, J. Bieger, Nat. Commun. 7, 11493 (2016)

    Article  ADS  Google Scholar 

  34. F. Silva, S.M. Teichmann, S.L. Cousin, M. Hemmer, J. Biegert, Nat. Commun. 6, 6611 (2015)

    Article  ADS  Google Scholar 

  35. G.C. Li, Y.H. Zheng, Z.N. Zeng, R.X. Li, Chin. Opt. Lett. 15, 071901 (2017)

    Article  ADS  Google Scholar 

  36. H. Liu, R.L.Q. Feng, Spectrosc. Lett. 50, 289 (2017)

    Article  ADS  Google Scholar 

  37. R.F. Lu, P.Y. Zhang, K.L. Han, Phys. Rev. E 77, 066701 (2008)

    Article  ADS  Google Scholar 

  38. J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005)

    Article  ADS  Google Scholar 

  39. L.Q. Feng, W.L. Li, H. Liu, Ann. Phys. (Berlin) 529, 1700093 (2017)

    Article  ADS  Google Scholar 

  40. T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006)

    Article  Google Scholar 

  41. G. Chen, F.D. Zhang, Eur. Phys. J. D 71, 137 (2017)

    Article  ADS  Google Scholar 

  42. L.Q. Feng, T.S. Chu, Phys. Plasmas 24, 103121 (2017)

    Article  ADS  Google Scholar 

  43. L.Q. Feng, H. Liu, Phys. Plasmas 22, 013107 (2015)

    Article  ADS  Google Scholar 

  44. P. Antoine, B. Piraux, A. Maquet, Phys. Rev. A 51, R1750 (1995)

    Article  ADS  Google Scholar 

  45. L.Q. Feng, K. Liu, Int. J. Mod. Phys. B 32, 1850161 (2018)

    Article  ADS  Google Scholar 

  46. G. Orlando, P.P. Corso, E. Fiordilino, F. Persico, J. Mod. Opt. 56, 1761 (2009)

    Article  ADS  Google Scholar 

  47. X.H. Song, W.F. Yang, Z.N. Zeng, R.X. Li, Z.Z. Xu, Phys. Rev. A 82, 053821 (2010)

    Article  ADS  Google Scholar 

  48. L.Q. Feng, H. Liu, Can. J. Phys. 94, 651 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Li, Y. High-intensity isolated attosecond X-ray pulse generation by using low-intensity ultraviolet–mid-infrared laser beam. Eur. Phys. J. D 72, 167 (2018). https://doi.org/10.1140/epjd/e2018-90268-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90268-6

Keywords

Navigation