Skip to main content
Log in

Classical simulation of differential single charge transfer in fast proton-helium collisions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Three-body classical trajectory Monte Carlo method is employed to simulate the differential single electron capture process in fast proton-helium collisions. For the considered collisional system, by means of an independent particle model, both electron capture and electron excitation probabilities are evaluated in terms of the classical impact parameter and the related discussions are presented. The method is also applied to calculate the projectile-angular distribution of the cross sections in energy range of 50–630 keV. The obtained results are compared to the available precise data due to the cold-target recoil ion momentum spectroscopy and good overall agreement found with these experimental data. Also, within a classical-trajectory framework, the correlation between the impact parameter and the projectile scattering angle is examined through the simulation of the collision process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Rescigno, M. Baertschy, W.A. Isaacs, C.E. McCurdy, Science 286, 2474 (1999)

    Article  Google Scholar 

  2. M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D.H. Madison, S. Jones, J. Ullrich, Nature 422, 48 (2003)

    Article  ADS  Google Scholar 

  3. M. Schulz, D.H. Madison, Int. J. Mod. Phys. A 21, 3649 (2006)

    Article  ADS  Google Scholar 

  4. J. Eichler, Lectures on ion-atom collisions from nonrelatevistic to relatevistic velocities (Elsevier, New York, 2005)

  5. D.P. Dewangan, J. Eichler, Phys. Rep. 247, 59 (1994)

    Article  ADS  Google Scholar 

  6. D. Belkić, I. Mančev, J. Hanssen, Rev. Mod. Phys. 80, 249 (2008)

    Article  ADS  Google Scholar 

  7. R.R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt-Böcking, Phys. Rep. 330, 192 (2000)

    Article  Google Scholar 

  8. J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. Schmidt, H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1436 (2003)

    Article  Google Scholar 

  9. D. Fischer, D. Globig, J. Goullon, M. Grieser, R. Hubele, V.L.B. de Jesus, A. Kelkar, A. LaForge, H. Lindenblatt, D. Misra, B. Najjari, K. Schneider, M. Schulz, M. Sell, X. Wang, Phys. Rev. Lett. 109, 113202 (2012)

    Article  ADS  Google Scholar 

  10. R. Hubele, M. Schuricke, J. Goullon, H. Lindenblatt, N. Ferreira, A. Laforge, E. Brühl, V.L.B. de Jesus, D. Globig, A. Kelkar, A. Misra, K. Schneider, M. Schulz, M. Sell, Z. Song, X. Wang, S. Zhang, D. Fischer, Rev. Sci. Instrum. 86, 033105 (2015)

    Article  ADS  Google Scholar 

  11. V. Mergel, R. Dörner, Kh. Khayyat, M. Achler, T. Weber, O. Jagutzki, H.J. Lüdde, C.L. Cocke, H. Schmidt-Böcking, Phys. Rev. Lett. 86, 2257 (2001)

    Article  ADS  Google Scholar 

  12. M.S. Schöffler, J. Titze, L.Ph.H. Schmidt, T. Jahnke, N. Neumann, O. Jagutzki, H. Schmidt-Böcking, R. Dörner, I. Mančev, Phys. Rev. A 79, 064701 (2009)

    Article  ADS  Google Scholar 

  13. E. Ghanbari-Adivi, J. Phys. B: At. Mol. Opt. Phys. 44, 165204 (2011)

    Article  ADS  Google Scholar 

  14. U. Chowdhury, A.L. Harris, J.L. Peacher, D.H. Madison, J. Phys. B: At. Mol. Opt. Phys. 45, 035203 (2012)

    Article  ADS  Google Scholar 

  15. A. Igarashi, L. Gulyás, A. Ohsaki, Eur. Phys. J. D 66, 79 (2012)

    Article  ADS  Google Scholar 

  16. U. Chowdhury, A.L. Harris, J.L. Peacher, D.H. Madison, J. Phys. B: At. Mol. Opt. Phys. 45, 175204 (2012)

    Article  ADS  Google Scholar 

  17. J. Loreau, S. Ryabchenko, N. Vaeck, J. Phys. B: At. Mol. Opt. Phys. 47, 135204 (2014)

    Article  ADS  Google Scholar 

  18. S. Samaddar, S. Halder, A. Mondal, C.R. Mandal, M. Purkait, T.K. Das, J. Phys. B: At. Mol. Opt. Phys. 50, 065202 (2017)

    Article  ADS  Google Scholar 

  19. R. Abrines, I.C. Percivals, Proc. Phys. Soc. 88, 861 (1966)

    Article  ADS  Google Scholar 

  20. R. Abrines, I.C. Percivals, Proc. Phys. Soc. 88, 873 (1966)

    Article  ADS  Google Scholar 

  21. I.C. Percival, D. Richards, Adv. At. Mol. Phys. 11, 1 (1975)

    ADS  Google Scholar 

  22. R.E. Olson, A. Salop, Phys. Rev. A 16, 531 (1977)

    Article  ADS  Google Scholar 

  23. R.E. Olson, in Springer handbook of atomic, molecular, and optical physics (Springer, New York, 2006), p. 869

  24. D. Eichenauer, N. Grun, W. Scheid, J. Phys. B: At. Mol. Phys. 15, L17 (1982)

    Article  ADS  Google Scholar 

  25. N. Toshima, Phys. Rev. A 45, R2663 (1992)

    Article  ADS  Google Scholar 

  26. D.R. Schultz, C.O. Reinhold, R.E. Olson, D.G. Seelyt, Phys. Rev. A 46, 275 (1992)

    Article  ADS  Google Scholar 

  27. C. Illescas, A. Riera, J. Phys. B: At. Mol. Opt. Phys. 31, 2777 (1998)

    Article  ADS  Google Scholar 

  28. D. Hennecart, J. Pascale, Phys. Rev. A 71, 012710 (2005)

    Article  ADS  Google Scholar 

  29. R.E. Olson, J. Fiol, Phys. Rev. Lett. 95, 263203 (2005)

    Article  ADS  Google Scholar 

  30. T.C. Naginey, E.W. Stacy, B.B. Pollock, H.R.J. Walters, C.T. Whelan, Phys. Rev. A 89, 062704 (2014)

    Article  ADS  Google Scholar 

  31. M.K. Pandey, R.K. Dubey, D.N. Tripathi, Eur. Phys. J. D 45, 273 (2007)

    Article  ADS  Google Scholar 

  32. L. Sarkadi, Phys. Rev. A 82, 052710 (2010)

    Article  ADS  Google Scholar 

  33. R.O. Barrachina, J. Fiol, J. Phys.: Conf. Ser. 199, 012022 (2010)

    Google Scholar 

  34. T. Liamsuwan, S. Uehara, D. Emfietzoglou, H. Nikjoo, Radiat. Prot. Dosim. 143, 152 (2011)

    Article  Google Scholar 

  35. M.K. Pandey, Y.-C. Lin, Y.K. Ho, Chin. J. Phys. 51, 1192 (2013)

    Google Scholar 

  36. S. Jana, R. Samanta, M. Purkait, Indian J. Phys. 87, 693 (2013)

    Google Scholar 

  37. L. Sarkadi, L. Gulyás, Phys. Rev. A 90, 022702 (2014)

    Article  ADS  Google Scholar 

  38. A. Jorge, C. Illescas, L. Méndez, B. Pons, Phys. Rev. A 94, 022710 (2016)

    Article  ADS  Google Scholar 

  39. H.N. Tran, D.D. Dao, S. Incerti, M.A. Bernal, M. Karamitros, T.V. Nahan Hao, T.M. Dang, Z. Francis, Nucl. Instr. Meth. Phys. Res. B 366, 140 (2016)

    Article  ADS  Google Scholar 

  40. H. Ghavaminia, L. Gulyás, L. Sarkadi, E. Bene, S. Demes, Z. Juhasz, Eur. Phys. J. D 71, 217 (2017)

    Article  ADS  Google Scholar 

  41. P. Focke, R.E. Olson, N.D. Cariatore, M. Alessi, S. Otranto, Phys. Rev. A 95, 052707 (2017)

    Article  ADS  Google Scholar 

  42. C. O. Reinhold, C. A. Falcón, Phys. Rev. A 33, 3859 (1986)

    Article  ADS  Google Scholar 

  43. K. Tőkési, Á. Kövér, Nucl. Instr. Meth. Phys. Res. B 154, 259 (1999)

    Article  Google Scholar 

  44. P.J. Martin, K. Arnett, D.M. Blankenship, T.J. Kvale, J.L. Peacher, E. Redd, V.C. Sutcliffe, J.T. Park, C.D. Lin, J.H. McGuire, Phys. Rev. A 23, 2858 (1981)

    Article  ADS  Google Scholar 

  45. I. Mančev, V. Mergel, L. Schmidt, J. Phys. B: At. Mol. Opt. Phys. 36, 2733 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ghanbari-Adivi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velayati, A., Ghanbari-Adivi, E. Classical simulation of differential single charge transfer in fast proton-helium collisions. Eur. Phys. J. D 72, 100 (2018). https://doi.org/10.1140/epjd/e2018-90066-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90066-2

Keywords

Navigation