Skip to main content
Log in

Stability properties of a thin relativistic beam propagation in a magnetized plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam through a plasma that is relatively strongly magnetized. Such situation is encountered when the gyro-frequency is comparable to the plasma frequency, i.e. |Ω e | ~ ω pe . In addition, it is assumed the plasma density is much bigger than that of the beam. In the regime when the solution propagates in the comoving frame with a velocity that is much smaller than the thermal speed, a nonlinear stationary beam structure is found in which the electron motion in the transverse direction is negligible and whose transverse localization comes from the nonlinearity associated with its 3-D adiabatic expansion. Conversely, when the parallel velocity of the structure is sufficiently large to prevent the heat convection along the magnetic field, a helicoidally shaped stationary solution is found that is governed by the transverse convective nonlinearity. The profile of such beam is determined from a nonlinear dispersion relation and depends on the transverse size of the beam and its pitch angle to the magnetic field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Duris et al., Nat. Commun. 5, 4928 (2014)

    Article  Google Scholar 

  2. R. Hu, B. Liu, H. Lu, M. Zhou, C. Lin, Z. Sheng, C.-E. Chen, X. He, X. Yan, Nat. Sci. Rep. 5, 15499 (2015)

    Article  ADS  Google Scholar 

  3. P. Chen, J.M. Dawson, R.W. Huff, T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985)

    Article  ADS  Google Scholar 

  4. E. Hemsing, A. Knyazik, F. O’Shea, A. Marinelli, P. Musumeci, O. Williams, S. Tochitsky, J.B. Rosenzweig, Appl. Phys. Lett. 100, 091110 (2012)

    Article  ADS  Google Scholar 

  5. C. Joshi, T. Katsouleas, J.M. Dawson, Y.T. Yan, J.M. Slater, IEEE J. Quantum Electron. 23, 1571 (1987)

    Article  ADS  Google Scholar 

  6. R. Fedele, V.G. Vaccaro, G. Miano, Phys. Scr. T30, 192 (1990)

    Article  ADS  Google Scholar 

  7. R.L. Williams, C.E. Clayton, C. Joshi, T.C. Katsouleas, IEEE Trans. Plasma Sci. 21, 156 (1993)

    Article  ADS  Google Scholar 

  8. X. An, B. Van Compernolle, J. Bortnik, R.M. Thorne, L. Chen, W. Li, Geophys. Res. Lett. 43, 2413 (2016)

    Article  ADS  Google Scholar 

  9. S.M. Mahajan, F.A. Asenjo, J. Plasma Phys. 83, 905830101 (2017)

    Article  Google Scholar 

  10. R. Fedele, T. Akhter, D. Jovanović, S. De Nicola, A. Mannan, Eur. Phys. J. D 68, 210 (2014)

    Article  ADS  Google Scholar 

  11. R. Fedele, A. Mannan, S. De Nicola, D. Jovanović, T. Akhter, Eur. Phys. J. D 68, 271 (2014)

    Article  ADS  Google Scholar 

  12. T. Akhter, D. Terzani, R. Fedele, S. De Nicola, D. Jovanović, submitted to Phys. Lett. A (2018)

  13. T. Akhter, R. Fedele, S. De Nicola, F. Tanjia, D. Jovanović, A. Mannan, Nucl. Instrum. Method. Phys. Res. A 829, 426 (2016)

    Article  ADS  Google Scholar 

  14. J.J. Su, T. Katsouleas, J.M. Dawson, P. Chen, M. Jones, IEEE Trans. Plasma Sci. 15, 192 (1987)

    Article  ADS  Google Scholar 

  15. R. Keinigs, M.E. Jones, Phys. Fluids 30, 252 (1987)

    Article  ADS  Google Scholar 

  16. V.A. Balakirev, I.V. Karas’, G.V. Sotnikov, Plasma Phys. Rep. 26, 889 (2000)

    Article  ADS  Google Scholar 

  17. V.A. Balakirev, V.I. Karas’, I.V. Karas’, V.D. Levchenko, Laser Part. Beams 19, 597 (2001)

    Article  ADS  Google Scholar 

  18. M.S. Hur, D.N. Gupta, H. Suk, Phys. Lett. A 372, 2684 (2008)

    Article  ADS  Google Scholar 

  19. J.B. Rosenzweig, D.B. Cline, B. Cole, H. Figueroa, W. Gai, Phys. Rev. Lett. 61, 98 (1988)

    Article  ADS  Google Scholar 

  20. L. Gorbunov, P. Mora, PT.M. Antonsen Jr., Phys. Rev. Lett. 76, 2495 (1996)

    Article  ADS  Google Scholar 

  21. L.M. Gorbunov, P. Mora, T.M. Antonsen Jr., Phys. Plasmas4, 4358 (1997)

    Article  ADS  Google Scholar 

  22. D. Umstadter, J. Phys. D: Appl. Phys. 36, R151 (2003)

    Article  ADS  Google Scholar 

  23. S. Eliezer, A. Loeb, in American Institute of Physics Conference Series (1987), Vol. 156, pp. 170–182

    ADS  Google Scholar 

  24. A. Flacco, J. Vieira, A. Lifschitz, F. Sylla, S. Kahaly, M. Veltcheva, L.O. Silva, V. Malka, Nat. Phys. 11, 409 (2015)

    Article  Google Scholar 

  25. R. Fedele, F. Tanjia, D. Jovanović, S. De Nicola, C. Ronsivalle, J. Plasma Phys. 80, 133 (2014)

    Article  ADS  Google Scholar 

  26. D. Jovanović, R. Fedele, F. Tanjia, S. De Nicola, M. Belić, J. Plasma Phys. 79, 397 (2013)

    Article  ADS  Google Scholar 

  27. R. Fedele, F. Tanjia, S. De Nicola, D. Jovanović, P.K. Shukla, Phys. Plasmas 19, 102106 (2012)

    Article  ADS  Google Scholar 

  28. S. Galyamin, A. Tyukhtin, in Proceedings, 4th International Particle Accelerator Conference (IPAC 2013): Shanghai, China, May 12–17, 2013 (2013), p. TUPEA049, http://JACoW.org/IPAC2013/papers/tupea049.pdf

  29. A.G. Khachatryan, Sov. J. Exp. Theor. Phys. 94, 516 (2002)

    Article  ADS  Google Scholar 

  30. S.M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003)

    Article  ADS  Google Scholar 

  31. V. Muñoz, F.A. Asenjo, M. Domínguez, R.A. López, J.A. Valdivia, A. Viñas, T. Hada, Nonlinear Process. Geophys. 21, 217 (2014)

    Article  ADS  Google Scholar 

  32. D. Jovanović, R. Fedele, S. De Nicola, T. Akhter, M. Belić, Phys. Scr. 92, 124006 (2017)

    Article  ADS  Google Scholar 

  33. V.P. Milantiev, On the viscosity and heat conductivity of a collisionless plasma in a magnetic field (report Risø-R-175, http://orbit.dtu.dk/files/52588196/ris_175.pdf, 1968)

  34. R. Fitzpatrick, Plasma physics: an introduction (CRC Press, London, New York, 2014)

  35. H. Callen, G. Horwitz, Am. J. Phys. 39, 938 (1971)

    Article  ADS  Google Scholar 

  36. J.J. Ramos, Phys. Plasmas 15, 082106 (2008)

    Article  ADS  Google Scholar 

  37. S.I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  38. A.N. Kaufman, M.V. Stenflo, Phys. Scr. 11, 269 (1975)

    Article  ADS  Google Scholar 

  39. M. Porkolab, M.V. Goldman, Phys. Fluids 19, 872 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  40. M.Y. Yu, P.K. Shukla, Plasma Phys. 19, 889 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Jovanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović, D., Fedele, R., Belić, M. et al. Stability properties of a thin relativistic beam propagation in a magnetized plasma. Eur. Phys. J. D 72, 95 (2018). https://doi.org/10.1140/epjd/e2018-80546-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80546-8

Keywords

Navigation