Skip to main content
Log in

Application of relativistic coupled-cluster theory to electron impact excitation of Mg+ in the plasma environment

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3s 2S1∕2–3p 2P1∕2;3∕2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3p 2P3∕2–3s 2S1∕2 transition is investigated for different incident electron energies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Pradhan, S.N. Nahar, Atomic astrophysics and spectroscopy (Cambridge University Press, New York, 2011)

  2. R.E. Johnson, Introduction to atomic and molecular collisions (Plenum Press, New York/London, 1982)

  3. M.Y. Amusia, in Many-body effects in single photoionization processes, many-body atomic physics, edited by J.J. Boyle, M.S. Pindzola (Cambridge University Press, New York, 1998), Chap. 8, p. 185

  4. D.E. Post, J. Nucl. Mater. 220, 143 (1995)

    Article  ADS  Google Scholar 

  5. R.A. Dressler, Y.-H. Chiu, O. Zatsarinny, K. Bartschat, R. Srivastava, L. Sharma, J. Phys. D 42, 185203 (2009)

    Article  ADS  Google Scholar 

  6. Dipti, R.K. Gangwar, R. Srivastava, A.D. Stauffer, Eur. J. Phys. D 67, 203 (2013)

    Article  ADS  Google Scholar 

  7. N.R. Badnell, G. Del Zanna, L. Fernández-Menchero, A.S. Giunta, G.Y. Liang, H.E. Mason, P.J. Storey, J. Phys. B 49, 094001 (2016)

    Article  ADS  Google Scholar 

  8. I. Bray, D.V. Fursa, A.S. Kheifets, A.T. Stelbovics, J. Phys. B 35, 15 (2002)

    Article  Google Scholar 

  9. P.G. Burke, R-matrix theory of atomic collisions (Springer-Verlag Publication, Berlin, 2013)

  10. P. Jönsson, X. He, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 177, 597 (2007)

    Article  ADS  Google Scholar 

  11. A. Szabo, N. Ostuland, Modern quantum chemistry, 1st edn. (revised) (Dover Publications, Inc., Mineola, NY, 1996)

  12. I. Shavitt, R.J. Bartlett, Many-body methods in chemistry and physics (Cambridge University Press, Cambridge, UK, 2009)

  13. R.K. Janev, S. Zhang, J. Wang, Matter Radiat. Extremes 1, 237 (2016)

    Article  Google Scholar 

  14. D. Salzmann, Atomic physics in hot plasmas (Oxford University Press, Oxford, 1998)

  15. J.C. Weisheit, Adv. At. Mol. Phys. 25, 101 (1989)

    Article  ADS  Google Scholar 

  16. M.S. Murillo, J.C. Weisheit, Phys. Rep. 302, 1 (1998)

    Article  ADS  Google Scholar 

  17. B. Saha, S. Fritzsche, Phys. Rev. A, 73, 036405 (2006)

    ADS  Google Scholar 

  18. A.N. Sil, J. Anton, S. Fritzsche, P.K. Mukherjee, B. Fricke, Eur. Phys. J. D 55, 645 (2009)

    Article  ADS  Google Scholar 

  19. Y. Jianmin, Phys. Rev. E 66, 047401 (2002)

    Google Scholar 

  20. S. Ichimaru, Rev. Mod. Phys.54, 1017 (1982)

    Article  ADS  Google Scholar 

  21. A.N. Sil, S. Canuto, P.K. Mukherjee, Adv. Quantum Chem. 58, 115 (2009)

    Article  Google Scholar 

  22. M.C. Zammit, D.V. Fursa, I. Bray, Chem. Phys. 398, 214 (2012)

    Article  ADS  Google Scholar 

  23. M.C. Zammit, D.V. Fursa, I. Bray, Chem. Phys. 82, 052705 (2010)

    Google Scholar 

  24. S.B. Zhang, J.G. Wang, R.K. Janev, Phys. Rev. Lett. 104, 023203 (2010)

    Article  ADS  Google Scholar 

  25. S.B. Zhang, J.G. Wang, R.K. Janev, X.J. Chen, Phys. Rev. A 83, 032724 (2011)

    Article  ADS  Google Scholar 

  26. Y.Y. Qi, Y. Wu, J.G. Wang, Y.Z. Qu, Phys. Plasmas 16, 023502 (2009)

    Article  ADS  Google Scholar 

  27. Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Rev. A 80, 063404 (2009)

    Article  ADS  Google Scholar 

  28. A. Ghoshal, Y.K. Ho, J. Phys. B 43, 045203 (2010)

    Article  ADS  Google Scholar 

  29. Z.B. Chen, C.Z. Dong, J. Jiang, L.Y. Xie, J. Phys. B 48, 144030 (2015)

    Article  ADS  Google Scholar 

  30. B.K. Sahoo, J. Phys. B 43, 231001 (2010)

    Article  ADS  Google Scholar 

  31. D.K. Nandy, S. Singh, B.K. Sahoo, MNRAS 452, 2546 (2015)

    Article  ADS  Google Scholar 

  32. B.K. Sahoo, B.P. Das, Phys. Rev. A 92, 052511 (2015)

    Article  ADS  Google Scholar 

  33. B.K. Sahoo, Phys. Rev. A 93, 022503 (2016)

    Article  ADS  Google Scholar 

  34. E. Charro, I. Martín, Astrophys. J. 585, 1191 (2003)

    Article  ADS  Google Scholar 

  35. A.G. Jensen, T.P. Snow, Astrophys. J. 669, 401 (2007)

    Article  ADS  Google Scholar 

  36. G. Çelik, D. Doğan, Ş. Ateş, M. Taşer, J. Quant. Spectrosc. Radiat. Transf. 113, 1601 (2012)

    Article  ADS  Google Scholar 

  37. N.F. Allard, G. Guillon, V.A. Alekseev, J.F. Kielkopf, A&A 593, A13 (2016)

    Article  ADS  Google Scholar 

  38. M. Guitou, A.K. Belyaev, P.S. Barklem, A. Spielfiedel, N. Feautrier, J. Phys. B 44, 035202 (2011)

    Article  ADS  Google Scholar 

  39. L. Sharma, A. Surzhykov, R. Srivastava, S. Fritzsche, Phys. Rev. A 83, 062701 (2011)

    Article  ADS  Google Scholar 

  40. S.J. Smith, A. Chutjian, J. Mitroy, S.S. Tayal, R.J.W. Henry, K.-F. Man, R.J. Mawhorter, I.D. Williams, Phys. Rev. A 48, 292 (1993)

    Article  ADS  Google Scholar 

  41. I.D. WIlliam, A. Chutjian, R.J. Mawhorter, J. Phys. B 19, 2189 (1986)

    Article  ADS  Google Scholar 

  42. I.D. Williams, A. Chutjian, A.Z. Msezane, R.J.W. Henry, Astrophys. J. 299, 1063 (1985)

    Article  ADS  Google Scholar 

  43. Y.K. Kim, Phys. Rev. A 65, 022705 (2002)

    Article  ADS  Google Scholar 

  44. A.W. Pangantiwar, R. Srivastava, J. Phys. B 21, L219 (1988)

    Article  ADS  Google Scholar 

  45. M. Das, B.K. Sahoo, S. Pal, Phys. Rev. A 93, 052513 (2016)

    Article  ADS  Google Scholar 

  46. B.K. Sahoo, M. Das, Eur. Phys. J. D 70, 270 (2016)

    Article  ADS  Google Scholar 

  47. http://www.nist.gov/pml/data/asd.cfm

  48. F.A. Parpia, C.F. Fischer, I.P. Grant, Comput. Phys. Commun. 94, 249 (1996)

    Article  ADS  Google Scholar 

  49. http://aphysics2.lanl.gov/cgi-bin/ION/runlanl08d.pl

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, L., Sahoo, B.K., Malkar, P. et al. Application of relativistic coupled-cluster theory to electron impact excitation of Mg+ in the plasma environment. Eur. Phys. J. D 72, 10 (2018). https://doi.org/10.1140/epjd/e2017-80501-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80501-3

Keywords

Navigation