Skip to main content
Log in

Formation of polymer-based nanoparticles and nanocomposites by plasma-assisted deposition methods

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

During the last decades, metal-polymer nanocomposites have been subject to extensive research as their electrical, magnetic and optical properties are very sensitive to their specific compositions and morphological structures. Although there exist a variety of standardized and well-established production processes based on plasma-assisted physical vapor deposition methods, significant progress in the understanding of the self-organized formation process has only been achieved with the help of computer simulations. In particular, computational approaches based on kinetic Monte Carlo (KMC) and molecular dynamics (MD) simulations turned out to be successful in recent years because they offer the potential to simulate and predict the system behavior on sufficiently long time scales. In this paper, we review several formation processes of metal-polymer systems that have been investigated in joint experimental and theoretical KMC and MD studies. These comprise the growth of metallic nanocolumns in a polymer matrix and the growth of nanogranular structures on a polymer film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Meichsner, M. Bonitz, A. Piel, H. Feske, Contrib. Plasma Phys. 52, 789 (2012)

    Article  ADS  Google Scholar 

  2. M. Bonitz, J. Lopez, K. Becker, H. Thomsen eds., in Complex plasmas: scientific challenges and technological opportunities, Springer series on atomic, optical and plasma physics (Springer International Publishing, Cham, Switzerland, 2014), Vol. 82

  3. H. Biederman, Vacuum 59, 594 (2000)

    Article  Google Scholar 

  4. F. Faupel, V. Zaporojtchenko, H. Greve, U. Schürmann, V.S.K. Chakravadhanula, C. Hanisch, A. Kulkarni, A. Gerber, E. Quandt, R. Podschun, Contrib. Plasma Phys. 47, 537 (2007)

    Article  ADS  Google Scholar 

  5. H. Haberland, M. Karrais, M. Mall, Y. Thurner, J. Vac. Sci. Technol. A 10, 3266 (1992)

    Article  ADS  Google Scholar 

  6. T.A. Fulton, G.J. Dolan, Phys. Rev. Lett. 59, 109 (1987)

    Article  ADS  Google Scholar 

  7. H. Graf, J. Vancea, H. Hoffmann, Appl. Phys. Lett. 80, 1264 (2002)

    Article  ADS  Google Scholar 

  8. H. Takele, S. Jebril, T. Strunskus, V. Zaporojtchenko, R. Adelung, F. Faupel, Appl. Phys. A 92, 345 (2008)

    Article  ADS  Google Scholar 

  9. M. Karttunen, P. Ruuskanen, V. Pitkänen, W.M. Albers, J. Electron. Mater. 37, 951 (2008)

    Article  ADS  Google Scholar 

  10. A. Biswas, O. Aktas, J. Kanzow, U. Saeed, T. Strunskus, V. Zaporojtchenko, F. Faupel, Mater. Lett. 58, 1530 (2004)

    Article  Google Scholar 

  11. A. Biswas, O. Aktas, U. Schürmann, U. Saeed, V. Zaporojtchenko, F. Faupel, T. Strunskus, Appl. Phys. Lett. 84, 2655 (2004)

    Article  ADS  Google Scholar 

  12. A. Emamifar, Applications of antimicrobial polymer nanocomposites in food packaging, in Advances in nanocomposite technology, edited by A. Hashim (InTech, Rijeka, 2011), Chap. 13

  13. F.R.F. Fan, A.J. Bard, J. Phys. Chem. B 106, 279 (2002)

    Article  Google Scholar 

  14. A. Pomogailo, V. Kestelman, Metallopolymer nanocomposites, Springer series in materials science (Springer, Berlin, Heidelberg, 2006)

  15. G.V. Ramesh, S. Porel, T.P. Radhakrishnan, Chem. Soc. Rev. 38, 2646 (2009)

    Article  Google Scholar 

  16. Q. Wang, L. Zhu, in Functional polymer nanocomposites for energy storage and conversion, ACS symposium series, edited by Q. Wang, L. Zhu (American Chemical Society, Washington, DC, 2010), Vol. 1034

  17. M. Schwartzkopf, A. Buffet, V. Körstgens, E. Metwalli, K. Schlage, G. Benecke, J. Perlich, M. Rawolle, A. Rothkirch, B. Heidmann et al., Nanoscale 5, 5053 (2013)

    Article  ADS  Google Scholar 

  18. H. Greve, A. Biswas, U. Schürmann, V. Zaporojtchenko, F. Faupel, Appl. Phys. Lett. 88, 123103 (2006)

    Article  ADS  Google Scholar 

  19. L. Rosenthal, H. Greve, V. Zaporojtchenko, T. Strunskus, F. Faupel, M. Bonitz, J. Appl. Phys. 114, 044305 (2013)

    Article  ADS  Google Scholar 

  20. L. Rosenthal, A. Filinov, M. Bonitz, V. Zaporojtchenko, F. Faupel, Contrib. Plasma Phys. 51, 971 (2011)

    Article  ADS  Google Scholar 

  21. M. Bonitz, L. Rosenthal, K. Fujioka, V. Zaporojtchenko, F. Faupel, H. Kersten, Contrib. Plasma Phys. 52, 890 (2012)

    Article  ADS  Google Scholar 

  22. J.W. Abraham, N. Kongsuwan, T. Strunskus, F. Faupel, M. Bonitz, J. Appl. Phys. 117, 014305 (2015)

    Article  ADS  Google Scholar 

  23. J.W. Abraham, T. Strunskus, F. Faupel, M. Bonitz, J. Appl. Phys. 119, 185301 (2016)

    Article  ADS  Google Scholar 

  24. M. Schwartzkopf, G. Santoro, C.J. Brett, A. Rothkirch, O. Polonskyi, A. Hinz, E. Metwalli, Y. Yao, T. Strunskus, F. Faupel et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)

    Article  Google Scholar 

  25. M. Bonitz, Quantum kinetic theory (Springer International Publishing, Cham, Switzerland, 2015)

  26. N. Schlünzen, M. Bonitz, Contrib. Plasma Phys. 56, 5 (2016)

    Article  ADS  Google Scholar 

  27. K. Balzer, N. Schlünzen, M. Bonitz, Phys. Rev. B 94, 245118 (2016)

    Article  ADS  Google Scholar 

  28. J. Hafner, Comput. Phys. Commun. 177, 6 (2007)

    Article  ADS  Google Scholar 

  29. J. Hafner, J. Comput. Chem. 29, 2044 (2008)

    Article  Google Scholar 

  30. A. Jansen, An introduction to kinetic Monte Carlo simulations of surface reactions, Lecture notes in physics (Springer-Verlag, Berlin Heidelberg, 2012)

  31. C.C. Battaile, D.J. Srolovitz, Annu. Rev. Mater. Res. 32, 297 (2002)

    Article  Google Scholar 

  32. V. Guerra, J. Loureiro, Plasma Sources Sci. Technol. 13, 85 (2004)

    Article  ADS  Google Scholar 

  33. M. Ziegler, J. Kröger, R. Berndt, A. Filinov, M. Bonitz, Phys. Rev. B 78, 245427 (2008)

    Article  ADS  Google Scholar 

  34. F. Ding, A. Rosén, K. Bolton, Phys. Rev. B 70, 075416 (2004)

    Article  ADS  Google Scholar 

  35. M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983)

    Article  ADS  Google Scholar 

  36. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  37. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001)

    Article  Google Scholar 

  38. T.R. Shan, B.D. Devine, T.W. Kemper, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 81, 125328 (2010)

    Article  ADS  Google Scholar 

  39. Y.K. Shin, T.R. Shan, T. Liang, M.J. Noordhoek, S.B. Sinnott, A.C. van Duin, S.R. Phillpot, MRS Bull. 37, 504 (2012)

    Article  Google Scholar 

  40. T. Liang, Y.K. Shin, Y.T. Cheng, D.E. Yilmaz, K.G. Vishnu, O. Verners, C. Zou, S.R. Phillpot, S.B. Sinnott, A.C. van Duin, Annu. Rev. Mater. Sci. 43, 109 (2013)

    Article  ADS  Google Scholar 

  41. E.C. Neyts, P. Brault, Plasma Process. Polym. 14 (2017)

  42. A.F. Voter, Phys. Rev. B 57, R13985 (1998)

    Article  ADS  Google Scholar 

  43. M.R. Sørensen, A.F. Voter, J. Chem. Phys. 112, 9599 (2000)

    Article  ADS  Google Scholar 

  44. A.F. Voter, Phys. Rev. Lett. 78, 3908 (1997)

    Article  ADS  Google Scholar 

  45. D. Perez, B.P. Uberuaga, Y. Shim, J.G. Amar, A.F. Voter, Chapter 4. Accelerated molecular dynamics methods: introduction and recent developments, in Annual reports in computational chemistry, edited by R.A. Wheeler (Elsevier, Amsterdam, Netherlands, 2009), Vol. 5, pp. 79–98

  46. A.F. Voter, F. Montalenti, T.C. Germann, Annu. Rev. Mater. Sci. 32, 321 (2002)

    Article  Google Scholar 

  47. K.M. Bal, E.C. Neyts, J. Chem. Theory Comput. 11, 4545 (2015)

    Article  Google Scholar 

  48. R. Marcelin, Ann. Phys. 3, 120 (1915)

    Article  Google Scholar 

  49. H. Eyring, J. Chem. Phys. 3, 107 (1935)

    Article  ADS  Google Scholar 

  50. M. Schwartzkopf, S. Roth, Nanomaterials 6, 239 (2016)

    Article  Google Scholar 

  51. M. Schwartzkopf, A. Hinz, O. Polonskyi, T. Strunskus, F.C. Löhrer, V. Körstgens, P. Müller-Buschbaum, F. Faupel, S.V. Roth, ACS Appl. Mater. Interfaces 9, 5629 (2017)

    Article  Google Scholar 

  52. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)

    Article  ADS  Google Scholar 

  53. G. Jeffers, M. Dubson, P. Duxbury, J. Appl. Phys. 75, 5016 (1994)

    Article  ADS  Google Scholar 

  54. M. Strobel, K.H. Heinig, T. Michely, Surf. Sci. 486, 136 (2001)

    Article  ADS  Google Scholar 

  55. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Willem Abraham.

Additional information

Contribution to the Topical Issue “Fundamentals of Complex Plasmas”, edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, J.W., Hinz, A., Strunskus, T. et al. Formation of polymer-based nanoparticles and nanocomposites by plasma-assisted deposition methods. Eur. Phys. J. D 72, 92 (2018). https://doi.org/10.1140/epjd/e2017-80426-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80426-9

Navigation