Skip to main content
Log in

Soliton-like behavior in fast two-pulse collisions in weakly perturbed linear physical systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We demonstrate that pulses of linear physical systems, weakly perturbed by nonlinear dissipation, exhibit soliton-like behavior in fast collisions. The behavior is demonstrated for linear waveguides with weak cubic loss and for systems described by linear diffusion–advection models with weak quadratic loss. We show that in both systems, the expressions for the collision-induced amplitude shifts due to the nonlinear loss have the same form as the expression for the amplitude shift in a fast collision between two solitons of the cubic nonlinear Schrödinger equation in the presence of weak cubic loss. Our analytic predictions are confirmed by numerical simulations with the corresponding coupled linear evolution models with weak nonlinear loss. These results open the way for studying dynamics of fast collisions between pulses of weakly perturbed linear physical systems in an arbitrary spatial dimension.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of solitons: the inverse scattering method (Plenum, New York, 1984)

  2. Y.S. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763 (1989)

    Article  ADS  Google Scholar 

  3. G.P. Agrawal, Nonlinear fiber optics (Academic, San Diego, CA, 2001)

  4. L.F. Mollenauer, J.P. Gordon, Solitons in optical fibers: fundamentals and applications (Academic, San Diego, CA, 2006)

  5. W. Horton, Y.H. Ichikawa, Chaos and structure in nonlinear plasmas (World Scientific, Singapore, 1996)

  6. L.F. Mollenauer, P.V. Mamyshev, IEEE J. Quantum Electron. 34, 2089 (1998)

    Article  ADS  Google Scholar 

  7. Y. Chung, A. Peleg, Nonlinearity 18, 1555 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Peleg, Q.M. Nguyen, Y. Chung, Phys. Rev. A 82, 053830 (2010)

    Article  ADS  Google Scholar 

  9. S. Chi, S. Wen, Opt. Lett. 14, 1216 (1989)

    Article  ADS  Google Scholar 

  10. B.A. Malomed, Phys. Rev. A 44, 1412 (1991)

    Article  ADS  Google Scholar 

  11. S. Kumar, Opt. Lett. 23, 1450 (1998)

    Article  ADS  Google Scholar 

  12. A. Peleg, Opt. Lett. 29, 1980 (2004)

    Article  ADS  Google Scholar 

  13. Q.M. Nguyen, A. Peleg, J. Opt. Soc. Am. B 27, 1985 (2010)

    Article  ADS  Google Scholar 

  14. A. Peleg, Y. Chung, Phys. Rev. A 85, 063828 (2012)

    Article  ADS  Google Scholar 

  15. F. Forghieri, R.W. Tkach, A.R. Chraplyvy, in Optical fiber telecommunications III, edited by I.P. Kaminow, T.L. Koch (Academic, San Diego, CA, 1997), Chap. 8

  16. G.P. Agrawal, P.L. Baldeck, R.R. Alfano, Phys. Rev. A 39, 3406 (1989)

    Article  ADS  Google Scholar 

  17. G.P. Agrawal, P.L. Baldeck, R.R. Alfano, Opt. Lett. 14, 137 (1989)

    Article  ADS  Google Scholar 

  18. A. Peleg, M. Chertkov, I. Gabitov, Phys. Rev. E 68, 026605 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Peleg, M. Chertkov, I. Gabitov, J. Opt. Soc. Am. B 21, 18 (2004)

    Article  ADS  Google Scholar 

  20. J. Soneson, A. Peleg, Physica D 195, 123 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. L.F. Mollenauer, P.V. Mamyshev, M.J. Neubelt, Electron. Lett. 32, 471 (1996)

    Article  Google Scholar 

  22. M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, E. Yamada, Electron. Lett. 33, 1233 (1997)

    Article  Google Scholar 

  23. M. Nakazawa, K. Suzuki, E. Yoshida, E. Yamada, T. Kitoh, M. Kawachi, Electron. Lett. 35, 1358 (1999)

    Article  Google Scholar 

  24. M. Nakazawa, IEEE J. Sel. Top. Quant. Electron. 6, 1332 (2000)

    Article  Google Scholar 

  25. L.F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, I. Kang, Opt. Lett. 28, 2043 (2003)

    Article  ADS  Google Scholar 

  26. Y. Chung, A. Peleg, Phys. Rev. A 77, 063835 (2008)

    Article  ADS  Google Scholar 

  27. A. Peleg, Y. Chung, Opt. Commun. 285, 1429 (2012)

    Article  ADS  Google Scholar 

  28. Q. Lin, O.J. Painter, G.P. Agrawal, Opt. Express 15, 16604 (2007)

    Article  ADS  Google Scholar 

  29. I.H. Malitson, J. Opt. Soc. Am. 55, 1205 (1965)

    Article  ADS  Google Scholar 

  30. C.Z. Tan, J. Non-Cryst. Solids 223, 158 (1998)

    Article  ADS  Google Scholar 

  31. D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)

    Article  ADS  Google Scholar 

  32. CRC handbook of chemistry and physics, edited by D.R. Lide (CRC Press, Boca Raton, FL, 2004)

  33. W.H. Hundsdorfer, J.G. Verwer, Numerical solution of time dependent advection-diffusion-reaction equations (Springer, New York, 2003)

  34. B.A. Malomed, A.V. Ustinov, Phys. Rev. B 49, 13024 (1994)

    Article  ADS  Google Scholar 

  35. B.A. Malomed, J. Opt. Soc. Am. B 31, 2460 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan M. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peleg, A., Nguyen, Q.M. & Huynh, T.T. Soliton-like behavior in fast two-pulse collisions in weakly perturbed linear physical systems. Eur. Phys. J. D 71, 315 (2017). https://doi.org/10.1140/epjd/e2017-80358-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80358-4

Keywords

Navigation