Skip to main content
Log in

Plasma characterization in reactive sputtering processes of Ti in Ar/O2 mixtures operated in metal, transition and poisoned modes: a comparison between direct current and high-power impulse magnetron discharges

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Two reactive sputtering techniques have been studied: direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS), operated in various Ar/O2 gas mixtures using a Ti target. The processes were characterized during different modes of operation including pure argon, metallic, transition and compound mode. Energy flux data as well as data on electron density and temperature were combined to obtain knowledge about the trends and changes in the investigated internal process plasma properties for the different modes investigated. Although there is a large reduction of the mass deposition rate (a factor 10 in DCMS and a factor 14 in HiPIMS), when transiting from the metal to compound mode, we detect no significant decrease of the total energy flux in DCMS and only a minor decrease in HiPIMS ( <20%). Such a result is surprising considering that the neutral flux contribution to the total energy flux is known to be significant. Instead, we find that the reduction of the neutral component is compensated by an increase in the electron and ion flux components, which is experimentally detected as an increase of the effective electron temperature and a slightly increasing (DCMS) or essentially constant (HiPIMS) electron density with increasing oxygen flow rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, J.T. Gudmundsson, Thin Solid Films 513, 1 (2006)

    Article  ADS  Google Scholar 

  2. J.T. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, J. Vac. Sci. Technol. A: Vac. Surf. Films 30, 30801 (2012)

    Article  Google Scholar 

  3. D. Lundin, K. Sarakinos, J. Mater. Res. 27, 780 (2012)

    Article  ADS  Google Scholar 

  4. J. Musil, P. Baroch, J. Vlcek, K.H. Nam, J.G. Han, Thin Solid Films 475, 208 (2005)

    Article  ADS  Google Scholar 

  5. J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)

    Article  ADS  Google Scholar 

  6. H. Kersten, H. Deutsch, H. Steffen, G.M.W. Kroesen, R. Hippler, Vacuum 63, 385 (2001)

    Article  ADS  Google Scholar 

  7. I. Petrov, F. Adibi, J.E. Greene, L. Hultman, J. Sundgren, Appl. Phys. Lett. 63, 36 (1993)

    Article  ADS  Google Scholar 

  8. I. Petrov, A. Myers, J.E. Greene, J.R. Abelson, J. Vac. Sci. Technol. A: Vac. Surf. Films 12, 2846 (1994)

    Article  ADS  Google Scholar 

  9. M. Čada, Z. Hubicka, P. Adámek, J. Kluson, L. Jastrabík, Surf. Coat. Technol. 205, S317 (2011)

    Article  Google Scholar 

  10. V. Stranák, Z. Hubicka, P. Adámek, J. Blažek, M. Tichý, P. Špatenka, R. Hippler, S. Wrehde, Surf. Coat. Technol. 201, 2512 (2006)

    Article  Google Scholar 

  11. D. Lundin, M. Čada, Z. Hubicka, J. Vac. Sci. Technol. A: Vac. Surf. Films 34, 41305 (2016)

    Article  Google Scholar 

  12. D. Depla, S. Mahieu, R. De Gryse, Thin Solid Films 517, 2825 (2009)

    Article  ADS  Google Scholar 

  13. I. Safi, Surf. Coat. Technol. 127, 203 (2000)

    Article  Google Scholar 

  14. S.D. Ekpe, S.K. Dew, J. Vac. Sci. Technol. A: Vac. Surf. Films 20, 1877 (2002)

    Article  ADS  Google Scholar 

  15. P.-A. Cormier, A. Balhamri, A.-L. Thomann, R. Dussart, N. Semmar, J. Mathias, R. Snyders, S. Konstantinidis, J. Appl. Phys. 113, 013305 (2013)

    Article  ADS  Google Scholar 

  16. D. Lundin, M. Stahl, H. Kersten, U. Helmersson, J. Phys. D: Appl. Phys. 42, 185202 (2009)

    Article  ADS  Google Scholar 

  17. A.L. Thomann, P.A. Cormier, V. Dolique, N. Semmar, R. Dussart, T. Lecas, B. Courtois, P. Brault, Thin Solid Films 539, 88 (2013)

    Article  ADS  Google Scholar 

  18. S. Bornholdt, J. Ye, S. Ulrich, H. Kersten, J. Appl. Phys. 112, 123301 (2012)

    Article  ADS  Google Scholar 

  19. S. Bornholdt, N. Itagaki, K. Kuwahara, H. Wulff, M. Shiratani, H. Kersten, Plasma Sources Sci. Technol. 22, 25019 (2013)

    Article  Google Scholar 

  20. V. Stranak, M. Quaas, H. Wulff, Z. Hubicka, S. Wrehde, M. Tichy, R. Hippler, J. Phys. D: Appl. Phys. 41, 055202 (2008)

    Article  ADS  Google Scholar 

  21. J. Alami, K. Sarakinos, F. Uslu, C. Klever, J. Dukwen, M. Wuttig, J. Phys. D: Appl. Phys. 42, 115204 (2009)

    Article  ADS  Google Scholar 

  22. F. Magnus, T.K. Tryggvason, S. Olafsson, J.T. Gudmundsson, F. Magnus, T.K. Tryggvason, S. Olafsson, J. Vac. Sci. Technol. A: Vac. Surf. Films 30, 50601 (2012)

    Article  Google Scholar 

  23. J.T. Gudmundsson, D. Lundin, N. Brenning, M.A. Raadu, C. Huo, T.M. Minea, Plasma Sources Sci. Technol. 25, 65004 (2016)

    Article  Google Scholar 

  24. J.A. Thornton, Thin Solid Films 54, 23 (1978)

    Article  ADS  Google Scholar 

  25. M. Stahl, T. Trottenberg, H. Kersten, Rev. Sci. Instrum. 81, 1 (2010)

    Article  Google Scholar 

  26. S. Gauter, M. Fröhlich, W. Garkas, M. Polak, H. Kersten, Plasma Sources Sci. Technol. 26, 65013 (2017)

    Article  Google Scholar 

  27. A. Piel, Plasma physics: an introduction to laboratory, space, and fusion plasmas (Springer, Berlin Heidelberg, 2010)

  28. I. Ivanov, S. Statev, V. Orlinov, R. Shkevov, Vacuum 43, 837 (1992)

    Article  ADS  Google Scholar 

  29. F. Haase, D. Lundin, S. Bornholdt, H. Kersten, Contrib. Plasma Phys. 55, 701 (2015)

    Article  ADS  Google Scholar 

  30. P. Baroch, J. Musil, J. Vlcek, K.H. Nam, J.G. Han, Surf. Coat. Technol. 193, 107 (2005)

    Article  Google Scholar 

  31. S. Berg, T. Nyberg, Thin Solid Films 476, 215 (2005)

    Article  ADS  Google Scholar 

  32. T. Kubart, M. Aiempanakit, J. Andersson, T. Nyberg, S. Berg, U. Helmersson, Surf. Coat. Technol. 205, S303 (2011)

    Article  Google Scholar 

  33. M. Aiempanakit, U. Helmersson, A. Aijaz, P. Larsson, R. Magnusson, J. Jensen, T. Kubart, Surf. Coat. Technol. 205, 4828 (2011)

    Article  Google Scholar 

  34. M. Samuelsson, D. Lundin, J. Jensen, M.A. Raadu, J. Gudmundsson, U. Helmersson, Surf. Coat. Technol. 205, 591 (2010)

    Article  Google Scholar 

  35. A. Mishra, P.J. Kelly, J.W. Bradley, Plasma Sources Sci. Technol. 19, 45014 (2010)

    Article  Google Scholar 

  36. G. West, P. Kelly, P. Barker, A. Mishra, J. Bradley, Plasma Process. Polym. 6, S543 (2009)

    Article  Google Scholar 

  37. P. Leroy, S. Konstantinidis, S. Mahieu, R. Snyders, D. Depla, J. Phys. D: Appl. Phys. 44, 115201 (2011)

    Article  ADS  Google Scholar 

  38. D. Lundin, J.T. Gudmundsson, N. Brenning, M.A. Raadu, T.M. Minea, J. Appl. Phys. 121, 171917 (2017)

    Article  ADS  Google Scholar 

  39. M. Čada, D. Lundin, Z. Hubicka, J. Appl. Phys. 121, 171913 (2017)

    Article  ADS  Google Scholar 

  40. M. Bowes, J.W. Bradley, J. Phys. D: Appl. Phys. 47, 265202 (2014)

    Article  ADS  Google Scholar 

  41. S. Mahieu, D. Depla, J. Phys. D: Appl. Phys. 42, 53002 (2009)

    Article  ADS  Google Scholar 

  42. D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, R. De Gryse, J. Appl. Phys. 101, 013301 (2007)

    Article  ADS  Google Scholar 

  43. N. Brenning, J.T. Gudmundsson, D. Lundin, T. Minea, M.A. Raadu, U. Helmersson, Plasma Sources Sci. Technol. 25, 65024 (2016)

    Article  Google Scholar 

  44. T. Shimizu, M. Villamayor, D. Lundin, U. Helmersson, J. Phys. D: Appl. Phys. 49, 1 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Haase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haase, F., Kersten, H. & Lundin, D. Plasma characterization in reactive sputtering processes of Ti in Ar/O2 mixtures operated in metal, transition and poisoned modes: a comparison between direct current and high-power impulse magnetron discharges. Eur. Phys. J. D 71, 245 (2017). https://doi.org/10.1140/epjd/e2017-80106-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80106-x

Keywords

Navigation