Skip to main content
Log in

Gravitational wave generation by interaction of high power lasers with matter using shock waves

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Gravitational wave generation by a strong shock wave in the interaction of high power laser with matter is analyzed in linear approximation of gravitational theory. The analytical formulas and estimates are derived for the metric perturbations and the radiated power of the generated gravitational waves. Furthermore the characteristics of polarization and the behavior of test particles are investigated in the presence of gravitational wave which will be important for the detection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Sitz. Preuss. Akad. Wiss. (Berlin), 154 (1918)

  2. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  Google Scholar 

  3. R.A. Hulse, J.H. Taylor, Astr. Phys. J L51, 195 (1975)

    Google Scholar 

  4. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman and Company, 1973)

  5. J.F. Chapline, Phys. Rev. D 10, 1064 (1974)

    Article  ADS  Google Scholar 

  6. V.N. Rudenko, Grav. Cosmol. 10, 41 (2004)

    ADS  Google Scholar 

  7. X. Ribeyre, V.T. Tikhonchuk, in Proceedings of 12th Marcel Grossmann Meeting on General Relativity, Paris, 2009, edited by T. Damour, R.T. Jantzen, R. Ruffini (World Scientific, 2012), pp. 1640–1642

  8. X. Ribeyre, V.T. Tikhonchuk, Possible Experimental Tests of General Relativity and Gravity on LMJ-PETAL, in Presentation on IZEST-ELI-NP Conference, Paris, 2014

  9. J. Weber, Phys. Rev. 117, 306 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  10. H.A. de Waard, L. Gottardi, J. van houwelingen, A. Shumack, G. Frossati, Class. Quant. Grav. 20, S143-S151 (2003)

    Article  ADS  Google Scholar 

  11. M. Cerdonio, M. Bonaldi, D. Carlesso, E. Cavallini, S. Caruso, A. Colombo, P. Falferi, G. Fontana, P.L. Fortini, R. Mezzena A. Ortolan, G.A. Prodi, L. Taffarello, G. Vedovato, S. Vitale, J.P. Zendri, Class. Quant. Grav. 14, 1491 (1997)

    Article  ADS  Google Scholar 

  12. T.T. Fricke, N.D. Smith-Lefebvre, R. Abbott, R. Adhikari, K.L. Dooley, M. Evans, P. Fritschel, V.V. Frolov, K. Kawabe, J.S. Kissel, B.J.J. Slagmolen, S.J. Waldman, Class. Quant. Grav. 29, 065005 (2012)

    Article  ADS  Google Scholar 

  13. V.B. Braginskij, Phys. Usp. 43, 691 (2000)

    Article  ADS  Google Scholar 

  14. K. Yagi, Int. J. Mod. Phys. D 22, 1341013 (2013)

    Article  ADS  Google Scholar 

  15. K. Tang et al., in Proceedings of Radio Science Conference, Qingdao, China, 2004, edited by T. Keyun, L. Dayong, N.J. Piscataway (IEEE, Beijing, China: Pub. House of Electronics Industry)

  16. R. Baker Jr., R.C. Woods, F. Li, in Proceedings of Space Technology and Applications International Forum (STAIF-2006), 2006, edited by M.S. El-Genk, American Institute of Physics Conference Proceedings (Melville, NY), pp. 1280–1289

  17. F. Li, H. Wen, Z. Fang, Chinese Physics B 22, 120402 (2013)

    Article  Google Scholar 

  18. Fangyu Li, Nan Yang, Zhenyun Fang, R.M.L. Baker Jr., G.V. Stephenson, Hao Wen, Phys. Rev. D 80, 064013 (2009)

    Article  ADS  Google Scholar 

  19. A. Arvanitaki, A.A. Geraci, Phys. Rev. Lett. 110, 071105 (2013)

    Article  ADS  Google Scholar 

  20. R. Fabbro, C. Max, E. Fabre, Phys. Fluids 25, 5 (1984)

    Google Scholar 

  21. N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Rev. Lett. 102, 025002 (2009)

    Article  ADS  Google Scholar 

  22. E. Gelfer, H. Kadlecová, O. Klimo, S. Weber, G. Korn, Physics of Plasmas 23, 093107 (2016)

    Article  ADS  Google Scholar 

  23. R. Baker, F.Y. Li, in Proceedings of Space Technology and Applications International Forum (STAIF-2005), edited by M.S. El-Genk, American Institute of Physics Conference Proceedings (Melville, NY), 2005

  24. F. Li, R. Baker, Presentation on www.gravwave.com, Development of the Li-Baker ultra-high sensitivity high frequency relic gravitational wave detector (2011)

  25. M.E. Gertsenshtein, Sov. Phys. JETP 14, 84 (1962)

    MathSciNet  Google Scholar 

  26. M. Maggiore, Gravitational waves: Vol. I: Theory and Experiments (Oxford university Press, NY, 2008)

  27. J. Biačák, V.N. Rudenko, Teorie relativity a gravitační vlny (MFF UK, Prague, 1986)

  28. S. Atzeni, J. Meyer-Ter-Vehn, Physics of Inertial Fusion (Clarendon Press-Oxford, Oxford, 2004)

  29. E.M. Campbell, W.J. Hogan, Plasma Phys. Controll. Fusion 41, B39 (1999)

    Article  Google Scholar 

  30. J.-L. Miquel, C. Lion, P. Vivini, J. Phys.: Conf. Ser. 688, 012067 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedvika Kadlecová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadlecová, H., Klimo, O., Weber, S. et al. Gravitational wave generation by interaction of high power lasers with matter using shock waves. Eur. Phys. J. D 71, 89 (2017). https://doi.org/10.1140/epjd/e2017-70586-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70586-y

Keywords

Navigation