Skip to main content
Log in

Minimum error discrimination of equi-coherent bosonic states of n-qubit by separable measurement

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, local distinguishability of the multipartite equi-coherent quantum states is studied in the bosonic subspace. A method is proposed to give an upper bound on the optimal success probability in terms of quantum coherence for equiprobable states. Then a necessary and sufficient condition to saturate this upper bound is presented. This condition enables us to give optimal measurements and success probabilities for several examples, including general pure states and n-qubit mixed states which may be linearly dependent. Perfect discrimination is possible for linearly independent states that have maximum quantum coherence. Finally, discrimination of these states when restricted to separable measurements is considered. To this aim an appropriate transformation is proposed to obtain separable measurements equivalent to the optimal measurement, in which the success probability for both is equal. So the upper bound is also valid for separable and LOCC protocol. The important advantage is that for the bosonic measurements it is always possible to obtain equivalent separable operators, not only for minimum error discrimination but also for all strategies of discrimination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Walgate, A.J. Short, L. Hardy, V. Vedral, Phys. Rev. Lett. 85, 4972 (2000)

    Article  ADS  Google Scholar 

  2. N. Yu, R. Duan, M. Ying, Phys. Rev. A 84, 012304 (2011)

    Article  ADS  Google Scholar 

  3. M. Horodecki, A. Sen(De), U. Sen, K. Horodecki, Phys. Rev. Lett. 90, 047902 (2003)

    Article  ADS  Google Scholar 

  4. C.H. Bennett, D.P. DiVincenzo, C.A. Fuchs, T. Mor, E. Rains, P.W. Shor, J.A. Smolin, W.K. Wootters, Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Nathanson, J. Math. Phys. 46, 062103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Hillery, J. Mimih, Phys. Rev. A 67, 042304 (2003)

    Article  ADS  Google Scholar 

  7. J. Watrous, Phys. Rev. Lett. 95, 080505 (2005)

    Article  ADS  Google Scholar 

  8. R. Duan, Y. Feng, Y. Xin, M. Ying, IEEE Trans. Inform. Theory 55, 1320 (2009)

    Article  MathSciNet  Google Scholar 

  9. A. Chefles, Phys. Rev. A 69, 050307(R) (2004)

    Article  ADS  Google Scholar 

  10. S. Virmani, M.F. Sacchi, M.B. Plenio, D. Markham, Phys. Lett. A 288, 62 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. X. Wei, M. Chen, Int. J. Theor. Phys. 54, 812 (2015)

    Article  Google Scholar 

  12. A. Chiuri, G. Vallone, N. Bruno, C. Macchiavello, D. Bruß, P. Mataloni, Phys. Rev. Lett. 105, 250501 (2010)

    Article  ADS  Google Scholar 

  13. C. Thiel, J. von Zanthier, T. Bastin, E. Solano, G.S. Agarwal, Phys. Rev. Lett. 99, 193602 (2007)

    Article  ADS  Google Scholar 

  14. S.S. Ivanov, P.A. Ivanov, I.E. Linington, N.V. Vitanov, Phys. Rev. A 81, 042328 (2010)

    Article  ADS  Google Scholar 

  15. A. Chiuri, C. Greganti, M. Paternostro, G. Vallone, P. Mataloni, Phys. Rev. Lett. 109, 173604 (2012)

    Article  ADS  Google Scholar 

  16. V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  17. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, New York, 2000)

  18. T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  19. D. Mondal, Ch. Datta, Sk. Sazim, Phys. Lett. A 380, 689 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yao Yao, Xing Xiao, Li Geand, C.P. Sun, Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  21. H.P. Yuen, R.S. Kennedy, M. Lax, IEEE T. Inform. Theory 21, 125 (1975)

    Article  MathSciNet  Google Scholar 

  22. A.S. Holevo, J. Multivariate Anal. 3, 337 (1973)

    Article  MathSciNet  Google Scholar 

  23. M.A. Jafarizadeh, R. Sufiani, Y.M. Khiavi, Phys. Rev. A 84, 012102 (2011)

    Article  ADS  Google Scholar 

  24. Zh. Bai, Sh. Du, arXiv:1503.07103 (2015)

  25. W.K. Wootters, Int. J. Quantum Inform. 04, 219 (2006)

    Article  Google Scholar 

  26. A. Peres, W.K. Wootters, Phys. Rev. Lett. 66, 1119 (1991)

    Article  ADS  Google Scholar 

  27. E. Chitambar, M.-H. Hsieh, Phys. Rev. A 88, 020302(R) (2013)

    Article  ADS  Google Scholar 

  28. M.A. Jafarizadeh, Y. Mazhari, M. Aali, Quantum Inf. Process. 10, 155 (2010)

    Article  MathSciNet  Google Scholar 

  29. D.J. Rowe, M.J. Carvalho, J. Repka, Rev. Mod. Phys. 84, 711 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derakhshan Akhgar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarizadeh, M., Akhgar, D., Mahmoudi, P. et al. Minimum error discrimination of equi-coherent bosonic states of n-qubit by separable measurement. Eur. Phys. J. D 70, 226 (2016). https://doi.org/10.1140/epjd/e2016-70204-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70204-8

Keywords

Navigation