Skip to main content
Log in

A comparative study of biomolecule and polymer surface modifications by a surface microdischarge

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Cold atmospheric plasma (CAP) sources are attractive sources of reactive species with promising industrial and biomedical applications, but an understanding of underlying surface mechanisms is lacking. A kHz-powered surface microdischarge (SMD) operating with N2/O2 mixtures was used to study the biological deactivation of two immune-stimulating biomolecules: lipopolysaccharide (LPS) and peptidoglycan (PGN), found in bacteria such as Escherichia coli and Staphylococcus aureus, respectively. Model polymers were also studied to isolate specific functional groups. Changes in the surface chemistry were measured to understand which plasma-generated species and surface modifications are important for biological deactivation. The overall goal of this work is to determine which effects of CAP treatment are generic and which bonds are susceptible to attack. CAP treatment deactivated biomolecules, oxidized surfaces, and introduced surface bound NO3. These effects can be controlled by the N2 fraction in O2 and applied voltage and vary among different target surfaces. The SMD was compared with an Ar/O2/N2-fed kHz-powered atmospheric pressure plasma jet and showed much higher surface modifications and surface chemistry tunability compared to the jet. Possible mechanisms are discussed and findings are compared with recent computational investigations. Our results demonstrate the importance of long-lived plasma-generated species and advance an atomistic understanding of CAP-surface interactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Fombuena, D. Garcia-Sanoguera, L. Sanchez-Nacher, R. Balart, T. Boronat, J. Adhes. Sci. Technol. 28, 97 (2014)

    Article  Google Scholar 

  2. G.B. Rusu, M. Asandulesa, I. Topala, V. Pohoata, N. Dumitrascu, M. Barboiu, Biosens. Bioelectron. 53, 154 (2014)

    Article  Google Scholar 

  3. Y. Kusano, J. Adhesion 90, 755 (2014)

    Article  Google Scholar 

  4. Z. Liu, P. Chen, D. Han, F. Lu, Q. Yu, Z. Ding, Vacuum 92, 13 (2013)

    Article  ADS  Google Scholar 

  5. T. Desmet, R. Morent, N. De Geyter, C. Leys, E. Schacht, P. Dubruel, Biomacromolecules 10, 2351 (2009)

    Article  Google Scholar 

  6. G. Da Ponte et al., Surf. Coat. Technol. 205, S525 (2011)

    Article  Google Scholar 

  7. G. Da Ponte, E. Sardella, F. Fanelli, R. d’Agostino, P. Favia, Eur. Phys. J. Appl. Phys. 56, 24023 (2011)

    Article  ADS  Google Scholar 

  8. E.A.J. Bartis, D.B. Graves, J. Seog, G.S. Oehrlein, J. Phys. D Appl. Phys. 46, 312002 (2013)

    Article  ADS  Google Scholar 

  9. M.J. Pavlovich et al., J. Phys. D Appl. Phys. 47, 5202 (2014)

    Article  Google Scholar 

  10. M.J. Pavlovich, Z. Chen, Y. Sakiyama, D.S. Clark, D.B. Graves, Plasma Process. Polym. 10, 69 (2013)

    Article  Google Scholar 

  11. M.J. Pavlovich, H.-W. Chang, Y. Sakiyama, D.S. Clark, D.B. Graves, J. Phys. D 46, 145202 (2013)

    Article  ADS  Google Scholar 

  12. J.-W. Lackmann et al., J. Roy. Soc. Interface 10, 20130591 (2013)

    Article  Google Scholar 

  13. M.J. Pavlovich, Y. Sakiyama, D.S. Clark, D.B. Graves, Plasma Process. Polym. 10, 1051 (2013)

    Article  Google Scholar 

  14. T.G. Klaempfl et al., Appl. Environ. Microbiol. 78, 5077 (2012)

    Article  Google Scholar 

  15. T. von Woedtke, S. Reuter, K. Masur, K.D. Weltmann, Phys. Rep. 530, 291 (2013)

    Article  ADS  Google Scholar 

  16. D.B. Graves, Phys. Plasmas 21, 080901 (2014)

    Article  ADS  Google Scholar 

  17. B. Haertel, T. von Woedtke, K.-D. Weltmann, U. Lindequist, Biomolecules and Therapeutics 22, 477 (2014)

    Article  Google Scholar 

  18. A.S. Wu et al., J. Surgical Res. 179, E1 (2013)

    Article  Google Scholar 

  19. K.P. Arjunan, G. Friedman, A. Fridman, A.M. Clyne, J. Roy. Soc. Interface 9, 147 (2012)

    Article  Google Scholar 

  20. A.M. Hirst, F.M. Frame, N.J. Maitland, D. O’Connell, BioMed Res. Int. 2014, 878319 (2014)

    Article  Google Scholar 

  21. B.B. Choi, et al., J. Biomed. Nanotechnol. 11, 900 (2015)

    Article  Google Scholar 

  22. N.K. Kaushik, Y.H. Kim, Y.G. Han, E.H. Choi, Curr. Appl. Phys. 13, 614 (2013)

    Article  ADS  Google Scholar 

  23. E.A. Ratovitski, et al., Plasma Process. Polym. 11, 1128 (2014)

    Article  Google Scholar 

  24. D.B. Graves, Plasma Process. Polym. 11, 1120 (2014)

    Article  Google Scholar 

  25. N. Barekzi, M. Laroussi, Plasma Process. Polym. 10, 1039 (2013)

    Article  Google Scholar 

  26. D.B. Graves, J. Phys. D 45, 263001 (2012)

    Article  ADS  Google Scholar 

  27. R. Brandenburg, et al., Contrib. Plasma Phys. 54, 202 (2014)

    Article  ADS  Google Scholar 

  28. P. Talebizadeh, M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski, M. Arai, Renew. Sustain. Energy Rev. 40, 886 (2014)

    Article  Google Scholar 

  29. R. Rudolph, K.P. Francke, H. Miessner, Plasmas Polym. 8, 153 (2003)

    Article  Google Scholar 

  30. R. Hackam, H. Akiyama, IEEE Trans. Dielectr. Electr. Insul. 7, 654 (2000)

    Article  Google Scholar 

  31. G. Isbary, et al., Expert Rev. Med. Devices 10, 367 (2013)

    Article  Google Scholar 

  32. P. Bruggeman, R. Brandenburg, J. Phys. D 46, 464001 (2013)

    Article  ADS  Google Scholar 

  33. J. Jeon et al., Plasma Process. Polym. 11, 426 (2014)

    Article  Google Scholar 

  34. S. Shimizu et al., Planet Space Sci. 90, 60 (2014)

    Article  ADS  Google Scholar 

  35. T. Shimizu, Y. Sakiyama, D.B. Graves, J.L. Zimmermann, G.E. Morfill, New J. Phys. 14, 103028 (2012)

    Article  Google Scholar 

  36. Y. Sakiyama, D.B. Graves, Chang H-W, T. Shimizu, G.E. Morfill, J. Phys. D Appl. Phys. 45, 425201 (2012)

    Article  ADS  Google Scholar 

  37. J. Heinlin et al., Future Microbiol. 8, 1097 (2013)

    Article  Google Scholar 

  38. K. Oehmigen et al., Plasma Process. Polym. 8, 904 (2011)

    Article  Google Scholar 

  39. K. Oehmigen, M. Haehnel, R. Brandenburg, C. Wilke, K.D. Weltmann, T. von Woedtke, Plasma Process. Polym. 7, 250 (2010)

    Article  Google Scholar 

  40. M.J. Pavlovich, D.S. Clark, D.B. Graves, Plasma Sources Sci. Technol. 23, 065036 (2014)

    Article  ADS  Google Scholar 

  41. M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, IEEE Trans. Plasma Sci. 33, 310 (2005)

    Article  ADS  Google Scholar 

  42. J.S. Sousa, K. Niemi, L.J. Cox, Q.T. Algwari, T. Gans, D. O’Connell, J. Appl. Phys. 109, 123302 (2011)

    Article  ADS  Google Scholar 

  43. M.Y. Alkawareek et al., Plos One 7, e44289 (2012)

    Article  ADS  Google Scholar 

  44. K. Fricke, S. Reuter, D. Schroeder, V. Schulz-von der Gathen, K.-D. Weltmann, T. von Woedtke, IEEE Trans. Plasma Sci. 40, 2900 (2012)

    Article  ADS  Google Scholar 

  45. K. Fricke et al., IEEE Trans. Plasma Sci. 40, 2970 (2012)

    Article  ADS  Google Scholar 

  46. K. Fricke et al., Plos One 7, e42539 (2012)

    Article  ADS  Google Scholar 

  47. K. Fricke, H. Tresp, R. Bussiahn, K. Schroeder, T. von Woedtke, K.D. Weltmann, Plasma Chem. Plasma Process. 32, 801 (2012)

    Article  Google Scholar 

  48. K. Fricke, H. Steffen, T. von Woedtke, K. Schroeder, K.-D. Weltmann, Plasma Process. Polym. 8, 51 (2011)

    Article  Google Scholar 

  49. S. Reuter, J. Winter, A. Schmidt-Bleker, H. Tresp, M.U. Hammer, K.-D. Weltmann, IEEE Trans. Plasma Sci. 40, 2788 (2012)

    Article  ADS  Google Scholar 

  50. S. Reuter, et al., IEEE Trans. Plasma Sci. 40, 2986 (2012)

    Article  ADS  Google Scholar 

  51. E.A.J. Bartis, P. Luan, A.J. Knoll, C. Hart, J. Seog, G.S. Oehrlein, Biointerphases 10, 029512 (2015)

    Article  Google Scholar 

  52. W. Tian, M.J. Kushner, J. Phys. D 47, 165201 (2014)

    Article  ADS  Google Scholar 

  53. J. Winter et al., J. Phys. D 47, 224001 (2014)

    Article  ADS  Google Scholar 

  54. K.Y. Baik et al., Plasma Process. Polym. 10, 235 (2013)

    Article  Google Scholar 

  55. C.A.J. van Gils, S. Hofmann, B.K.H.L. Boekema, R. Brandenburg, P.J. Bruggeman, J. Phys. D 46, 175203 (2013)

    Article  ADS  Google Scholar 

  56. D. Dobrynin, A. Fridman, A.Y. Starikovskiy, IEEE Trans. Plasma Sci. 40, 2163 (2012)

    Article  ADS  Google Scholar 

  57. A. Starikovskiy, Y. Yang, Y.I. Cho, A. Fridman, Plasma Sources Sci. Technol. 20, 024003 (2011)

    Article  ADS  Google Scholar 

  58. P. Bruggeman, C. Leys, J. Phys. D 42, 053001 (2009)

    Article  ADS  Google Scholar 

  59. E.A.J. Bartis, P. Luan, A.J. Knoll, D.B. Graves, J. Seog, G.S. Oehrlein, Plasma Process. Polym. (2015)

  60. E.A.J. Bartis, et al., J. Phys. D 47, 045202 (2014)

    Article  ADS  Google Scholar 

  61. C. Erridge, E. Bennett-Guerrero, I.R. Poxton, Microbes Infect. 4, 837 (2002)

    Article  Google Scholar 

  62. W. Vollmer, D. Blanot, M.A. de Pedro, FEMS Microbiol. Rev. 32, 149 (2008)

    Article  Google Scholar 

  63. B. Fournier, D.J. Philpott, Clin. Microbiol. Rev. 18, 521 (2005)

    Article  Google Scholar 

  64. Y.S. Lo, N.D. Huefner, W.S. Chan, P. Dryden, B. Hagenhoff, T.P. Beebe, Langmuir 15, 6522 (1999)

    Article  Google Scholar 

  65. T. Shimizu, J.L. Zimmermann, G.E. Morfill, New J. Phys. 13, 023026 (2011)

    Article  ADS  Google Scholar 

  66. A.J. Knoll, P. Luan, E.A.J. Bartis, C. Hart, Y. Raitses, G.S. Oehrlein, Appl. Phys. Lett. 105, 171601 (2014)

    Article  ADS  Google Scholar 

  67. D. Briggs, Surface Analysis of Polymers by XPS and Static SIMS (Cambridge University Press, Cambridge, 1998)

  68. J.H. Scofield, J. Electron. Spectrosc. Relat. Phenom. 8, 129 (1976)

    Article  Google Scholar 

  69. J.S. Sousa, G. Bauville, B. Lacour, V. Puech, M. Touzeau, Eur. Phys. J. 47, 22807 (2009)

    Google Scholar 

  70. S. Schneider et al., Plasma Process. Polym. 9, 561 (2012)

    Article  Google Scholar 

  71. S. Schneider, J.W. Lackmann, F. Narberhaus, J.E. Bandow, B. Denis, J. Benedikt, J. Phys. D 44, 295201 (2011)

    Article  Google Scholar 

  72. T.-Y. Chung, et al., Plasma Process. Polym. 10, 167 (2013)

    Article  Google Scholar 

  73. F. Weilnboeck et al., J. Vac. Sci. Technol. B 28, 993 (2010)

    Article  Google Scholar 

  74. F.E. Truica-Marasescu, M.R. Wertheimer, Macromol. Chem. Phys. 206, 744 (2005)

    Article  Google Scholar 

  75. R. Wilken, A. Hollander, J. Behnisch, Plasmas Polym. 7, 185 (2002)

    Article  Google Scholar 

  76. A. Hollander, J. Behnisch, Surf. Coat. Technol. 98, 855 (1998)

    Article  Google Scholar 

  77. A.N. Bhoj, M.J. Kushner, J. Phys. D 40, 6953 (2007)

    Article  ADS  Google Scholar 

  78. J.F. Rabek, Photodegradation of Polymers (Springer-Verlag, New York, 1996)

  79. B.S. Park, D.H. Song, H.M. Kim, B.-S. Choi, H. Lee, J.-O. Lee, Nature 458, 1191 (2009)

    Article  ADS  Google Scholar 

  80. E. Vogli, D. Metzler, G.S. Oehrlein, Appl. Phys. Lett. 102, 253105 (2013)

    Article  ADS  Google Scholar 

  81. F. Weilnboeck, et al., J. Vac. Sci. Technol. B 30, 031807 (2012)

    Article  Google Scholar 

  82. G.S. Oehrlein, R.J. Phaneuf, D.B. Graves, J. Vac. Sci. Technol. B 29, 010801 (2011)

    Article  Google Scholar 

  83. R.L. Bruce, et al., J. Appl. Phys. 107, 084301 (2010)

    Article  ADS  Google Scholar 

  84. R.L. Bruce et al., J. Vac. Sci. Technol. B 27, 1142 (2009)

    Article  Google Scholar 

  85. G. Fauland, F. Constantin, H. Gaffar, T. Bechtold, J. Appl. Polym. Sci. 132, 41294 (2015)

    Article  Google Scholar 

  86. A. Chiper, G. Borcia, Plasma Chem. Plasma Process. 33, 553 (2013)

    Article  Google Scholar 

  87. M. Donegan, V. Milosavljevic, D.P. Dowling, Plasma Chem. Plasma Process. 33, 941 (2013)

    Article  Google Scholar 

  88. K.G. Doherty et al., Plasma Process. Polym. 10, 978 (2013)

    Article  Google Scholar 

  89. G.-L. Chen, et al., Chin. Phys. B 22 (2013)

  90. T. Homola, J. Matousek, B. Hergelova, M. Kormunda, L.Y.L. Wu, M. Cernak, Polym. Degrad. Stab. 97, 886 (2012)

    Article  Google Scholar 

  91. D. Pappas, J. Vac. Sci. Technol. A 29, 020801 (2011)

    Article  Google Scholar 

  92. N. Hogg, B. Kalyanaraman, Biochim. Biophys. Acta 1411, 378 (1999)

    Article  Google Scholar 

  93. V.M. Darleyusmar, N. Hogg, V.J. Oleary, M.T. Wilson, S. Moncada, Free Rad. Res. Commun. 17, 9 (1992)

    Article  Google Scholar 

  94. D.F. Church, W.A. Pryor, Environ. Health Perspect. 64, 111 (1985)

    Article  Google Scholar 

  95. S. Gross, A.K. Bertram, J. Geophys. Res. Atm. 114, D02307 (2009)

    Article  ADS  Google Scholar 

  96. S. Gross, A.K. Bertram, J. Phys. Chem. A 112, 3104 (2008)

    Article  Google Scholar 

  97. I. Stefanovic, N.K. Bibinov, A.A. Deryugin, I.P. Vinogradov, A.P. Napartovich, K. Wiesemann, Plasma Sources Sci. Technol. 10, 406 (2001)

    Article  ADS  Google Scholar 

  98. U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003)

    Article  Google Scholar 

  99. S. Iseni, S. Reuter, K.-D. Weltmann, J. Phys. D 47, 075203 (2014)

    Article  ADS  Google Scholar 

  100. A.F.H. van Gessel, B. Hrycak, M. Jasinski, J. Mizeraczyk, J.J.A.M. van der Mullen, P.J. Bruggeman, J. Phys. D 46, 095201 (2013)

    Article  ADS  Google Scholar 

  101. B.T.J. van Ham, S. Hofmann, R. Brandenburg, P.J. Bruggeman, J. Phys. D 47, 224013 (2014)

    Article  ADS  Google Scholar 

  102. W.A. Pryor, G.L. Squadrito, Am. J. Physiol.-Lung. Cell Mol. Phys. 268, L699 (1995)

    Google Scholar 

  103. D.H. Xu, et al., Plos One 10, e0128205 (2015)

    Article  Google Scholar 

  104. P.R. Ogilby, Chem. Soc. Rev. 39, 3181 (2010)

    Article  Google Scholar 

  105. W. Van Gaens, A. Bogaerts, Plasma Sources Sci. Technol. 23, 035013 (2014)

    Article  ADS  Google Scholar 

  106. R. Wilken, A. Hollander, J. Behnisch, Surf. Coat. Technol. 116, 991 (1999)

    Article  Google Scholar 

  107. R. Wilken, A. Hollander, J. Behnisch, Macromolecules 31, 7613 (1998)

    Article  ADS  Google Scholar 

  108. B.E.E. Kastenmeier, P.J. Matsuo, G.S. Oehrlein, R.E. Ellefson, L.C. Frees, J. Vac. Sci. Technol. A 19, 25 (2001)

    Article  ADS  Google Scholar 

  109. B.E.E. Kastenmeier, P.J. Matsuo, J.J. Beulens, G.S. Oehrlein, J. Vac. Sci. Technol. A 14, 2802 (1996)

    Article  ADS  Google Scholar 

  110. J. Van der Paal, C.C. Verlackt, M. Yusupov, E.C. Neyts, A. Bogaerts, J. Phys. D 48, 155202 (2015)

    Article  ADS  Google Scholar 

  111. M. Yusupov, A. Bogaerts, S. Huygh, R. Snoeckx, A.C.T. van Duin, E.C. Neyts, J. Phys. Chem. C 117, 5993 (2013)

    Article  Google Scholar 

  112. M. Yusupov, E.C. Neyts, U. Khalilov, R. Snoeckx, A.C.T. van Duin, A. Bogaerts, New J. Phys. 14, 093043 (2012)

    Article  ADS  Google Scholar 

  113. M. Yusupov, E.C. Neyts, C.C. Verlackt, U. Khalilov, A.C.T. van Duin, A. Bogaerts, Plasma Process. Polym. 12, 162 (2014)

    Article  Google Scholar 

  114. J. Van der Paal, S. Aernouts, A.C.T. van Duin, E.C. Neyts, A. Bogaerts, J. Phys. D 46, 395201 (2013)

    Article  ADS  Google Scholar 

  115. A. Bogaerts, M. Yusupov, J. Van der Paal, C.C.W. Verlackt, E.C. Neyts, Plasma Process. Polym. 11, 1156 (2014)

    Article  Google Scholar 

  116. Y. Zhang, R.C. Chapleski, J.W. Lu, T.H. Rockhold, D. Troya, J.R. Morris, Phys. Chem. Chem. Phys. 16, 16659 (2014)

    Article  Google Scholar 

  117. E. Grosjean, D. Grosjean, J.H. Seinfeld, Environ. Sci. Technol. 30, 1038 (1996)

    Article  ADS  Google Scholar 

  118. I.J. George, J.P.D. Abbatt, Nat. Chem. 2, 713 (2010)

    Article  Google Scholar 

  119. R. Dorai, M.J. Kushner, J. Phys. D 36, 666 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gottlieb S. Oehrlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartis, E., Luan, P., Knoll, A. et al. A comparative study of biomolecule and polymer surface modifications by a surface microdischarge. Eur. Phys. J. D 70, 25 (2016). https://doi.org/10.1140/epjd/e2015-60446-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60446-3

Keywords

Navigation