Skip to main content
Log in

Non-contact friction for ion-surface interactions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Non-contact friction forces are exerted on physical systems through dissipative processes, when the two systems are not in physical contact with each other, or, in quantum mechanical terms, when the overlap of their wave functions is negligible. Non-contact friction is mediated by the exchange of virtual quanta, with the additional requirement that the scattering process needs to have an inelastic component. For finite-temperature ion-surface interactions, the friction is essentially caused by Ohmic resistance due to the motion of the image charge moving in a dielectric material. A conceivable experiment is difficult because the friction force needs to be isolated from the interaction with the image charge, which significantly distorts the ion’s flight path. We propose an experimental setup which is designed to minimize the influence of the image charge interaction though a compensation mechanism, and evaluate the energy loss due to non-contact friction for helium ions (He+) interacting with gold, vanadium, titanium and graphite surfaces. Interactions with the infinite series of mirror charges in the plates are summed in terms of the logarithmic derivatives of the Gamma function, and of the Hurwitz zeta function.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Tomassone, A. Widom, Phys. Rev. B 56, 4938 (1997)

    Article  ADS  Google Scholar 

  2. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 1 (Springer, New York, 1989)

  3. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 2 (Springer, New York, 1989)

  4. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 3 (Springer, New York, 1989)

  5. C.W. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 2nd edn. (Springer, New York, 2000)

  6. C.W. Gardiner, Quantum Noise (Springer, New York, 1991)

  7. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Zh. Éksp. Teor. Fiz. 37, 229 (1959) [Sov. Phys. J. Exp. Theor. Phys. 10, 161 (1960)]

    Google Scholar 

  8. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Sov. Phys. Usp. 73, 153 (1961)

    Article  ADS  Google Scholar 

  9. A.I. Volokitin, B.N.J. Persson, Phys. Rev. B 65, 115419 (2002)

    Article  ADS  Google Scholar 

  10. P.W. Milonni, The Quantum Vacuum (Academic Press, San Diego, 1994)

  11. L.P. Pitaevskii, E.M. Lifshitz, Statistical Physics (Part 2), Vol. 9 of the Course on Theoretical Physics (Pergamon Press, Oxford, 1958)

  12. http://en.wikipedia.org/wiki/fluctuation- dissipationtheorem

  13. U. D. Jentschura et al., in preparation (2015)

  14. M. Antezza, L.P. Pitaevskii, S. Stringari, V.B. Svetovoy, Phys. Rev. A 77, 022901 (2008)

    Article  ADS  Google Scholar 

  15. R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    Article  ADS  Google Scholar 

  16. U.M.B. Marconi, A. Puglisi, L. Rondoni, A. Vulpiani, Phys. Rep. 461, 111 (2008)

    Article  ADS  Google Scholar 

  17. G. Łach, M. DeKieviet, U.D. Jentschura, Phys. Rev. A 81, 052507 (2010)

    Article  ADS  Google Scholar 

  18. A. Deinega, S. John, Opt. Lett. 37, 112 (2012)

    Article  ADS  Google Scholar 

  19. Z.C. Yan, J.F. Babb, A. Dalgarno, G.W.F. Drake, Phys. Rev. A 54, 2824 (1996)

    Article  ADS  Google Scholar 

  20. M. Zahn, Am. J. Phys. 44, 1132 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  21. C.A. Lütken, F. Ravndal, Phys. Rev. A 31, 2082 (1985)

    Article  ADS  Google Scholar 

  22. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, 1st edn. (J. Wiley & Sons, New York, 1978), Vol. 2

  23. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich D. Jentschura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jentschura, U.D., Lach, G. Non-contact friction for ion-surface interactions. Eur. Phys. J. D 69, 119 (2015). https://doi.org/10.1140/epjd/e2015-50811-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50811-7

Keywords

Navigation