Skip to main content
Log in

Investigation of quantum coherence effects in a multilevel atom induced by three laser fields

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, we report a detail theoretical study to understand the quantum coherence processes induced by three laser fields in a multilevel atom. In one of the coupling scheme using three laser fields we have theoretically simulated the EIA and EIT resonances simultaneously in a single probe transmission profile. It has been shown that these two coherent resonances of opposite kinds can be tuned at any position of the probe profile and they cancel out when they are completely merged together. We have also theoretically calculated the dual-EIT as well as a single EIT resonance with improved contrast in an N-type scheme. It has been shown that the contrast of the V-type EIT is greatly enhanced in the N-type system when it is tuned to the position of Λ-type EIT. We have examined the atomic density effect on the enhanced N-type EIT resonance and it has been shown that the nature of variation of the line shape of this pronounced EIT resonance strongly depends on the variations of the individual Λ- and V-type EIT with atomic density. Theoretically simulated spectra have been compared with the experimental observations in rubidium vapour with its natural abundances. For the experimental comparison of the observed resonances under different atom-laser coupling schemes, we have used the D 2 transition (5S1/2–5P3/2) of 85Rb isotope. A good agreement is found between the simulated results and the experimental spectra.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arimondo, Prog. Opt. 35, 257 (1996)

    Article  Google Scholar 

  2. S.E. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  3. K.J. Boller, A. Imamoglu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  4. A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin, Phys. Rev. A 61, 011802(R) (1999)

    Article  ADS  Google Scholar 

  5. A. Lezama, S. Barreiro, A.M. Akulshin, Phys. Rev. A 59, 4732 (1999)

    Article  ADS  Google Scholar 

  6. M.D. Lukin, Rev. Mod. Phys. 75, 457 (2003)

    Article  ADS  Google Scholar 

  7. A. Dogariu, A. Kuzmich, H. Cao, L.J. Wang, Opt. Express 8, 344 (2001)

    Article  ADS  Google Scholar 

  8. D.J. Fulton, S. Shepherd, R.R. Moseley, B.D. Sinclair, M.H. Dunn, Phys. Rev. A 52, 2302 (1995)

    Article  ADS  Google Scholar 

  9. G.R. Welch, G.G. Padmabandu, E.S. Fry, M.D. Lukin, D.E. Nikonov, F. Sander, M.O. Scully, A. Weis, F.K. Tittel, Found. Phys. 28, 621 (1998)

    Article  Google Scholar 

  10. M. Xiao, Y.Q. Li, S.Z. Jin, J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995)

    Article  ADS  Google Scholar 

  11. S. Mitra, M.M. Hossain, B. Ray, P.N. Ghosh, S. Cartaleva, D. Slavov, Opt. Commun. 283, 1500 (2010)

    Article  ADS  Google Scholar 

  12. S. Mitra, S. Dey, M.M. Hossain, P.N. Ghosh, B. Ray, J. Phys. B 46, 075002 (2013)

    Article  ADS  Google Scholar 

  13. B.P. Hou, S.J. Wang, W.L. Yu, W.L. Sun, Phys. Rev. A 69, 053805 (2004)

    Article  ADS  Google Scholar 

  14. B.P. Hou, S.J. Wang, W.L. Yu, W.L. Sun, J. Phys. B 38, 1419 (2005)

    Article  ADS  Google Scholar 

  15. Y. Gu, L. Wang, K. Wang, C. Yang, Q. Gong, J. Phys. B 39, 463 (2006)

    Article  ADS  Google Scholar 

  16. L.B. Kong, X.H. Tu, J. Wang, Y. Zhu, M.S. Zhan, Opt. Commun. 269, 362 (2007)

    Article  ADS  Google Scholar 

  17. M.M. Hossain, S. Mitra, P. Poddar, C. Chaudhuri, B. Ray, P.N. Ghosh, J. Phys. B 44, 115501 (2011) and references therein

    Article  ADS  Google Scholar 

  18. Y. Zhang, A.W. Brown, M. Xiao, Phys. Rev. Lett. 99, 123603 (2007)

    Article  ADS  Google Scholar 

  19. Y. Chen, X.G. Wei, B.S. Ham, J. Phys. B 42, 065506 (2009)

    Article  ADS  Google Scholar 

  20. M.A. Antón, F. Carreño, O.G. Calderón, S. Melle, I. Gonzalo, Opt. Commun. 281, 6040 (2008)

    Article  ADS  Google Scholar 

  21. J. Sheng, X. Yang, U. Khadka, M. Xiao, Opt. Express 19, 17059 (2011)

    Article  ADS  Google Scholar 

  22. S.D. Badger, I.G. Hughes, C.S. Adams, J. Phys. B 34, L749 (2001)

    Article  ADS  Google Scholar 

  23. M. Kwon, K. Kim, H.S. Moon, H.D. Park, J.B. Kim, J. Phys. B 34, 2951 (2001)

    Article  ADS  Google Scholar 

  24. S. Briaudeau, D. Bloch, M. Ducloy, Europhys. Lett. 35, 337 (1996)

    Article  ADS  Google Scholar 

  25. D.A. Smith, I.G. Hughes, Am. J. Phys. 72, 631 (2004)

    Article  ADS  Google Scholar 

  26. L.P. Maguire, R.M.W. van Bijnen, E. Mese, R.E. Scholten, J. Phys. B 39, 2709 (2006)

    Article  ADS  Google Scholar 

  27. M.L. Harris, C.S. Adams, S.L. Cornish, I.C. McLeod, E. Tarleton, I.G. Hughes, Phys. Rev. A 73, 062509 (2006)

    Article  ADS  Google Scholar 

  28. H.D. Do, G. Moon, H.R. Noh, Phys. Rev. A 77, 032513 (2008)

    Article  ADS  Google Scholar 

  29. H.D. Do, M.S. Heo, G. Moon, H.R. Noh, W. Jhe, Opt. Commun. 281, 4042 (2008)

    Article  ADS  Google Scholar 

  30. J. Sagle, R.K. Namiotka, J. Huennekens, J. Phys. B 29, 2629 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Aich, N., Chaudhuri, C. et al. Investigation of quantum coherence effects in a multilevel atom induced by three laser fields. Eur. Phys. J. D 69, 43 (2015). https://doi.org/10.1140/epjd/e2014-50525-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50525-4

Keywords

Navigation