Skip to main content
Log in

Accurate treatment of total photoabsorption cross sections by an ab initio time-dependent method

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A detailed discussion of parallel and perpendicular transitions required for the photoabsorption of a molecule is presented within a time-dependent view. Total photoabsorption cross sections for the first two ultraviolet absorption bands of the N2O molecule corresponding to transitions from the X1 A′ state to the 21 A′ and 11 A′′ states are calculated to test the reliability of the method. By fully considering the property of the electric field polarization vector of the incident light, the method treats the coupling of angular momentum and the parity differently for two kinds of transitions depending on the direction of the vector whether it is: (a) situated parallel in a molecular plane for an electronic transition between states with the same symmetry; (b) situated perpendicular to a molecular plane for an electronic transition between states with different symmetry. Through this, for those transitions, we are able to offer an insightful picture of the dynamics involved and to characterize some new aspects in the photoabsorption process of N2O. Our calculations predicted that the parallel transition to the 21 A′ state is the major dissociation pathway which is in qualitative agreement with the experimental observations. Most importantly, a significant improvement in the absolute value of the total cross section over previous theoretical results [R. Schinke, J. Chem. Phys. 134, 064313 (2011), M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005), S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)] was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Heller, J. Chem. Phys. 68, 2066 (1978)

    Article  ADS  Google Scholar 

  2. R. Kosloff, J. Phys. Chem. 92, 2087 (1988)

    Article  Google Scholar 

  3. Z. Bacic, J.C. Light, Ann. Rev. Phys. Chem. 40, 469 (1989)

    Article  ADS  Google Scholar 

  4. C. Light, I.P. Hamilton, V.J. Lill, J. Chem. Phys. 82, 1400 (1985)

    Article  ADS  Google Scholar 

  5. D. Neuhauser, M. Baer, R.S. Judson, D.J. Kouri, J. Chem. Phys. 93, 312 (1990)

    Article  ADS  Google Scholar 

  6. R.S. Judson, D.J. Kouri, D. Neuhauser, M. Baer, Phys. Rev. A 42, 351 (1990)

    Article  ADS  Google Scholar 

  7. D.H. Zhang, J.Z.H. Zhang, J. Chem. Phys. 101, 1146 (1994)

    Article  ADS  Google Scholar 

  8. R.C. Mowrey, D.J. Kouri, J. Chem. Phys. 84, 6466 (1986)

    Article  ADS  Google Scholar 

  9. M.N. Daud, G.G. Balint-Kurti, Chin. Phys. Lett. 26, 073302 (2009)

    Article  Google Scholar 

  10. T.F. Hanisco, A.C. Kummel, J. Phys. Chem. 97, 7242 (1993)

    Article  Google Scholar 

  11. D.W. Neyer, A.J.R. Heck, D.W. Chandler, J. Chem. Phys. 110, 3411 (1999)

    Article  ADS  Google Scholar 

  12. D.W. Neyer, A.J.R. Heck, D.W. Chandler, J.M. Teule, M.H.M. Janssen, J. Phys. Chem. A 103, 10388 (1999)

    Article  Google Scholar 

  13. T. Suzuki, H. Katayanagi, K. Mo Y. Tonokura, Chem. Phys. Lett. 256, 90 (1996)

    Article  ADS  Google Scholar 

  14. P. Felder, B.M. Haas, J.R. Huber, Chem. Phys. Lett. 186, 177 (1991)

    Article  ADS  Google Scholar 

  15. N. Shafer, K. Tonokura, Y. Matsumi, S. Tasaki, J. Chem. Phys. 95, 6218 (1991)

    Article  ADS  Google Scholar 

  16. L.L. Springsteen, S. Satyapal, Y. Matsumi, L.M. Dobeck, J. Phys. Chem. 97, 7239 (1993)

    Article  Google Scholar 

  17. J.M. Teule, G.C. Groenenboom, D.W. Neyer, D.W. Chandler, M.H.M. Janssen, Chem. Phys. Lett. 320, 177 (2000)

    Article  ADS  Google Scholar 

  18. M. Ahmed, E.R. Wouters, D.S. Peterka, O.S. Vasyutinskii, Faraday Disc. 113, 425 (1999)

    Article  ADS  Google Scholar 

  19. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  20. R.D. Amos, A. Bernhardsson, A. Berning, P. Celani, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P.J. Knowles, T. Korona, R. Lindh, A.W. Lloyd, S.J. McNicholas, F.R. Manby, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, H.-J. Werner, MOLPRO, a package of ab initio programs designed by H.-J. Werner and P.J. Knowles version 2002.1

  21. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1998)

  22. R.N. Zare, Angular Momentum – Understanding Spatial Aspects in Chemistry and Physics (John Wiley and Sons, New York, 1998)

  23. J. Tennyson, B.T. Sutcliffe, J. Chem. Phys. 77, 4061 (1982)

    Article  ADS  Google Scholar 

  24. C. Leforestier, J. Chem. Phys. 94, 6388 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Campargue, D. Permogorov, M. Bach, M. Temsamani, J.V. Auwera, M. Fujii, J. Chem. Phys. 103, 5931 (1995)

    Article  ADS  Google Scholar 

  26. A. Campargue, Chem. Phys. Lett. 259, 563 (1996)

    Article  ADS  Google Scholar 

  27. R.A. Toth, Appl. Opt. 30, 5289 (1991)

    Article  ADS  Google Scholar 

  28. H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1984)

    Article  ADS  Google Scholar 

  29. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U.S. Department of Commerce, 1972)

  30. R. Schinke, J. Chem. Phys. 134, 064313 (2011)

    Article  ADS  Google Scholar 

  31. G.S. Selwyn, H.S. Johnston, J. Chem. Phys. 74, 3791 (1981)

    Article  ADS  Google Scholar 

  32. K. Yoshino, D.E. Freeman, W.H. Parkinson, Planet. Space Sci. 32, 1219 (1984). Spectral data can be downloaded from Harvard-Smithsonian Center for Astrophysics Molecular Data base, http://www.cfa.harvard.edu/amp/ampdata/n2opub84/n2o.html

    Article  URL  ADS  Google Scholar 

  33. G. Selwyn, J. Podolske, H.S. Johnston, Geophys. Res. Lett. 4, 427 (1977)

    Article  ADS  Google Scholar 

  34. M.F. Mérienne, B. Coquart, A. Jenouvrier, Planet. Space Sci. 38, 617 (1990)

    Article  ADS  Google Scholar 

  35. W.B. De More, S.P. Sander, C.J. Howard, A.R. Ravishankara, D.M. Golden, C.E. Kolb, R.F. Hampson, M.J. Kurylo, M.J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 1997)

  36. S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)

    Article  Google Scholar 

  37. M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Noh Daud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, M.N. Accurate treatment of total photoabsorption cross sections by an ab initio time-dependent method. Eur. Phys. J. D 68, 267 (2014). https://doi.org/10.1140/epjd/e2014-50400-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50400-4

Keywords

Navigation