Skip to main content
Log in

Size dependence of simulated optical properties for Cu nanocubes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This paper reports a systematic investigation on the optical properties of Cu nanocubes as a function of the edge length by the discrete dipole approximation. In the far-field, our results showed that the extinction resonance peak shifted to long wavelength from 595 nm to 670 nm as the size increased from 10 nm to 90 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for the nanocubes that were 50 nm and 90 nm in size, respectively. In the near field, the effects of the edge length on the local electric field were investigated considering the extinction spectra peak as the excitation wavelength. The near field intensity increased with size from 10 nm to 60 nm, being the highest at the excitation wavelength of 630 nm in edge length of 60 nm, followed by a decrease at larger sizes. The size dependence of far-field and near-field optical properties described here can guide design of plasmonic nanostructures for applications in nonlinear spectroscopy, near-field lithography and plasmonic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Nano. Lett. 7, 1947 (2007)

    Article  ADS  Google Scholar 

  2. T.V. Alves, W. Hermoso, F.R. Ornellas, P.H.C. Camargo, Chem. Phys. Lett. 544, 64 (2012)

    Article  ADS  Google Scholar 

  3. D.J. Campbell, Y.N. Xia, J. Chem. Educ. 84, 91 (2007)

    Article  Google Scholar 

  4. G.V. Hartland, Chem. Rev. 111, 3858 (2011)

    Article  Google Scholar 

  5. C. Noguez, J. Phys. Chem. C 111, 3606 (2007)

    Article  Google Scholar 

  6. H. Portales, N. Pinna, M.P. Pileni, J. Phys. Chem. A 113, 4094 (2009)

    Article  Google Scholar 

  7. S. Kim, Y.J. Jung, G.H. Gu, J.S. Suh, S.M. Park, S. Ryu, J. Phys. Chem. C 113, 16321 (2009)

    Article  Google Scholar 

  8. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Nat. Mater. 7, 442 (2008)

    Article  ADS  Google Scholar 

  9. V.E. Ferry, L.A. Sweatlock, D. Pacifici, H.A. Atwater, Nano Lett. 8, 4391 (2008)

    Article  ADS  Google Scholar 

  10. W.J. Galush, S.A. Shelby, M.J. Mulvihill, A. Tao, P. Yang, J.T. Groves, Nano Lett. 9, 2077 (2009)

    Article  ADS  Google Scholar 

  11. A.A. Gokhale, J.A. Dumesic, M. Mavrikakis, J. Am. Chem. Soc. 130, 1402 (2008)

    Article  Google Scholar 

  12. Q. Shao, R. Que, M. Shao, L. Cheng, S.T. Lee, Adv. Funct. Mater. 22, 2067 (2012)

    Article  Google Scholar 

  13. W. Hermoso, T.V. Alves, C.C.S. de Oliveira, E.G. Moriya, F.R. Ornellas, P.H.C. Camargo, Chem. Phys. 423, 142 (2013)

    Article  ADS  Google Scholar 

  14. H.F. Shi et al., J. Nanosci. Nanotechnol. 12, 1 (2012)

    Article  Google Scholar 

  15. C. Ungureanu, R.G. Rayavarapu, S. Manohar, T.G.V. Leeuwen, J. Appl. Phys. 105, 102032 (2009)

    Article  ADS  Google Scholar 

  16. B.N. Khlebtsov, N.G. Khlebtsov, J. Phys. Chem. C 111, 11516 (2007)

    Article  Google Scholar 

  17. S.W. Prescott, P. Mulvane, J. Appl. Phys. 99, 123504 (2006)

    Article  ADS  Google Scholar 

  18. A.R. Siekkinen, J.M. McLellan, J. Chen, Y. Xia, Chem. Phys. Lett. 432, 491 (2006)

    Article  ADS  Google Scholar 

  19. B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B 110, 15666 (2006)

    Article  Google Scholar 

  20. W. Hermoso, T.V. Alves, F.R. Ornellas, P.H.C. Camargo, Eur. Phys. J. D 66, 135 (2012)

    Article  ADS  Google Scholar 

  21. C. Noguez, J. Phys. Chem. C 111, 3806 (2007)

    Article  Google Scholar 

  22. A.L. Gonzalez, C. Noguez, G.P. Ortiz, G. Rodriguez-Gattorno, J. Phys. Chem. B 109, 17512 (2005)

    Article  Google Scholar 

  23. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  24. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Ming, H., Liu, G. et al. Size dependence of simulated optical properties for Cu nanocubes. Eur. Phys. J. D 69, 37 (2015). https://doi.org/10.1140/epjd/e2014-50303-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50303-4

Keywords

Navigation