Skip to main content
Log in

Accurate calculations of the 18 Λ-S states and 50 Ω states of PO+ cation: potential energy curves and spectroscopic parameters including the spin-orbit coupling effect

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The potential energy curves (PECs) of 5 Ω states generated from the 18 Λ-S states (X 1 Σ +, A1Σ, 11 Δ, 11 Π, 21Σ+, 21 Π, a 3 Σ +, 13 Δ, 13 Π, 13Σ, 23Σ+, 23 Π, 15Σ+, 15 Π 25 Π, 15Σ, 25Σ+ and 15 Δ) of PO+ cation are studied for the first time for internuclear separations from about 0.08 to 1.0 nm. Of these Λ-S states, only the 25Σ+ and 15 Δ are the replusive ones. The a 3 Σ +, 23Σ+, 15Σ, 23 Π, 13 Δ, 25Σ+ , and 15 Δ are the inverted states with the spin-orbit coupling effect included. The 11 Π, 13 Π, 15 Π and 23 Π states possess the double well. The 15Σ, 21 Π and 25 Π states and the second wells of 11 Π, 13 Π, 23 Π and 15 Π states are the rather weakly bound states. The PEC calculations are performed by the CASSCF method, which is followed by the icMRCI approach with Davidson correction in combination with the aug-cc-pV6Z basis set. Core-valence correlation and scalar relativistic corrections are included at the same time. The spin-orbit coupling effect is accounted for. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated for all the Λ-S and Ω bound states, and compared with the measurements and other theoretical results. Fair agreement is found between the present spectroscopic parameters and the measurements. The vibrational properties are evaluated for the weakly bound states. The effect of spin-orbit coupling on the spectroscopic parameters is discussed. The results reported in this paper can be expected to be reliable predicted ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Moussaoui, O. Ouamerali, G.R. de Maré, Int. Rev. Phys. Chem. 22, 641 (2003)

    Article  Google Scholar 

  2. R.H. Petrmiichl, K.A. Peterson, R.C. Woods, J. Chem. Phys. 94, 3504 (1991), and references therein

    Article  ADS  Google Scholar 

  3. K. Dressler, Helv. Phys. Acta 28, 563 (1955)

    Google Scholar 

  4. J.M. Dyke, A. Morris, A. Ridha, J. Chem. Soc. Faraday Trans. 2, 78, 2077 (1982)

    Article  Google Scholar 

  5. K.A. Peterson, R.C. Woods, J. Chem. Phys. 89, 4929 (1988)

    Article  ADS  Google Scholar 

  6. K.A. Peterson, R.C. Woods, J. Chem. Phys. 92, 6061 (1990)

    Article  ADS  Google Scholar 

  7. M.W. Wong, L. Radom, J. Phys. Chem. 94, 638 (1990)

    Article  Google Scholar 

  8. A. Spielfiedel, N.C. Handy, Phys. Chem. Chem. Phys. 1, 2401 (1999)

    Article  Google Scholar 

  9. P.A. Martin, M. Fehér, J. Mol. Struct. (Theochem) 540, 139 (2001)

    Article  Google Scholar 

  10. A. Metropoulos, A. Papakondylis, A. Mavridis, J. Chem. Phys. 119, 5981 (2003)

    Article  ADS  Google Scholar 

  11. J.F. Sun, J.M. Wang, D.H. Shi, Int. J. Quantum Chem. 112, 672 (2012)

    Article  Google Scholar 

  12. H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    Article  ADS  Google Scholar 

  13. P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)

    Article  ADS  Google Scholar 

  14. S.R. Langhoff, E.R. Davidson, Int. J. Quantum Chem. 8, 61 (1974)

    Article  Google Scholar 

  15. A. Richartz, R.J. Buenker, S.D. Peyerimhoff, Chem. Phys. 28, 305 (1978)

    Article  ADS  Google Scholar 

  16. T.V. Mourik, A.K. Wilson, T.H. Dunning, Mol. Phys. 96, 529 (1999)

    Article  Google Scholar 

  17. H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang and A. Wolf, MOLPRO 2010.1, a package of ab initio programs, see http://www.molpro.net

  18. A. Berning, M. Schweizer, H.-J. Werner, P.J. Knowles, P. Palmieri, Mol. Phys. 98, 1823 (2000)

    Article  ADS  Google Scholar 

  19. H.A. Bethe, E. Salpeter, Quantum Mechanics of One – and Two-Electron Atoms (Springer-Verlag, Berlin, 1977)

  20. D.E. Woon, T.H. Dunning, J. Chem. Phys. 103, 4572 (1995)

    Article  ADS  Google Scholar 

  21. K.A. Peterson, T.H. Dunning, J. Chem. Phys. 117, 10548 (2002)

    Article  ADS  Google Scholar 

  22. W.A. De Jong, R.J. Harrison, D.A. Dixon, J. Chem. Phys. 114, 48 (2001)

    Article  ADS  Google Scholar 

  23. T. Müller, M. Dallos, H. Lischka, Z. Dubrovay, P.G. Szalay, Theor. Chem. Acc. 105, 227 (2001), and reference therein

    Article  Google Scholar 

  24. D.H. Shi, H. Liu, J.F. Sun, Z.L. Zhu, Y.F. Liu, J. Mol. Spectrosc. 269, 143 (2011)

    Article  ADS  Google Scholar 

  25. W. Xing, D.H. Shi, J.F. Sun, Z.L. Zhu, Eur. Phys. J. D 67, 228 (2013)

    Article  ADS  Google Scholar 

  26. D.H. Shi X.H. Niu, J.F. Sun, Z.L. Zhu, J. Phys. Chem. A 117, 2020 (2013)

    Article  Google Scholar 

  27. D.H. Shi, X.H. Niu, J.F. Sun, Z.L. Zhu, J. Chem. Phys. 139, 044306 (2013)

    Article  ADS  Google Scholar 

  28. J.L.M.Q. González, D. Thompson, Comput. Phys. 11, 514 (1997)

    Article  Google Scholar 

  29. C.E. Moore, in Atomic energy levels, Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (United States Government Printing Office, Washington, 1971), Vol. 1 and references therein

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deheng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Cheng, C., Wang, S. et al. Accurate calculations of the 18 Λ-S states and 50 Ω states of PO+ cation: potential energy curves and spectroscopic parameters including the spin-orbit coupling effect. Eur. Phys. J. D 68, 291 (2014). https://doi.org/10.1140/epjd/e2014-50221-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50221-5

Keywords

Navigation