Skip to main content
Log in

Relativistic Vlasov code development for high energy density plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A newly developed relativistic Vlasov code is introduced. The governing Vlasov-Maxwell equation system is solved numerically in one-dimensional space and three-dimensional momentum space. Spherical coordinate system is adopted to characterize the momentum variables for its potential advantage on reducing computational cost. The resulting Vlasov equation is split into two advection equations with respect to position and momentum, respectively. They are solved with a conservative finite volume scheme, together with techniques suppressing numerical oscillations at sharp interfaces. Relativistic longitudinal plasma oscillations are investigated for different plasma temperatures and wave numbers. Results from code simulations are in good agreement with the existing theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Vlasov, J. Exp. Theor. Phys. 8, 291 (1938) (in Russian)

    MATH  Google Scholar 

  2. N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973)

  3. L.D. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946)

    MATH  Google Scholar 

  4. J.H. Malmberg, C.B. Wharton, Phys. Rev. Lett. 13, 184 (1964)

    Article  ADS  Google Scholar 

  5. J. Büchner, in Advanced Methods for Space Simulations, edited by H. Usui, Y. Omura, (TERRAPUB, Tokyo, 2007), pp. 23–46

  6. C.Z. Cheng, G. Knorr, J. Comput. Phys. 22, 330, (1976)

    Article  ADS  Google Scholar 

  7. A. Ghizzo, P. Bertrand, M. Shoucri, T.W. Johnston, E. Fijalkow, M.R. Feix, J. Comput. Phys. 90, 431 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. G. Manfredi, M. Shoucri, M.R. Feix, P. Bertrand, E. Fijalkow, A. Ghizzo, J. Comput. Phys. 121, 198 (1995)

    Article  MathSciNet  Google Scholar 

  9. E. Fijalkow, Comput. Phys. Commun. 116, 319 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. F. Califano, F. Pegoraro, S. Bulanov, Phys. Rev. Lett. 84, 3602 (2000)

    Article  ADS  Google Scholar 

  11. F. Filbet, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 172, 166 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. D.J. Strozzi, M.M. Shoucri, A. Bers, Comput. Phys. Commun. 164, 156 (2004)

    Article  ADS  MATH  Google Scholar 

  13. J. Büchner, N. Elkina, Space Sci. Rev. 121, 237 (2006)

    Article  Google Scholar 

  14. N. Crouseilles, A. Ghizzo, S. Salmon, INRIA Research Report number 6109 (2007)

  15. J.W. Banks, J.A.F. Hittinger, IEEE Trans. Plasma Sci. 38, 2198 (2010)

    Article  ADS  Google Scholar 

  16. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  17. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  18. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

  19. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Rev. Mod. Phys. 85, 1 (2013)

    Article  ADS  Google Scholar 

  20. H. Chen et al., Phys. Rev. Lett. 105, 015003 (2010)

    Article  ADS  Google Scholar 

  21. National Research Council, Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (National Academies, Washington, D.C., 2003)

  22. R.P. Drake, High-Energy-Density Physics (Springer, Berlin, 2006)

  23. J. Shebalin, NASA/TP-2001-210195 (2001)

  24. F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, O. Coulaud, J. Comput. Phys. 185, 512 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 227, 7889 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. N.J. Sircombe, T.D. Arber, J. Comput. Phys. 228, 4773 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. A. Suzuki, T. Shigeyama, J. Comput. Phys. 229, 1643 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. M. Shoucri, X. Lavocat-Dubuis, J.-P. Matte, F. Vidal, Laser Particle Beams 29, 315 (2011)

    Article  Google Scholar 

  29. M. Tzoufras, A. Tableman, F.S. Tsung, W.B. Mori, A.R. Bell, Phys. Plasmas 20, 056303 (2013)

    Article  ADS  Google Scholar 

  30. R. Schlickeiser, Phys. Plasmas 1, 2119 (1994)

    Article  ADS  Google Scholar 

  31. J. Bergman, B. Eliasson, Phys. Plasmas 8, 1482 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sizhong Wu.

Additional information

Contribution to the Topical Issue “Theory and Applications of the Vlasov Equation”, edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhang, H., Zhou, C. et al. Relativistic Vlasov code development for high energy density plasmas. Eur. Phys. J. D 68, 208 (2014). https://doi.org/10.1140/epjd/e2014-50161-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50161-0

Keywords

Navigation