Skip to main content
Log in

Adsorption of formamide on pure, Al-, N-doped, and Al/N co-doped (8, 0) single-wall carbon nanotubes: a DFT study

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This study investigates the sensing capabilities of (8,0) SWCNTs in detecting formamide (HCONH2), a molecule crucial for the structure of proteins, nucleic acids, and certain anti-cancer drugs. Adsorption of HCONH2 on pristine SWCNT, Al- and N-doped SWCNT, and Al/N co-doped SWCNT was studied using dispersion-corrected density functional theory (DFT-D). Formamide was adsorbed from both oxygen and –NH2 sides, and the structures were fully optimization. The relaxed structures were applied for calculating magnetic and electronic properties like adsorption energies, band structures, and partial density of states. Most negative adsorption energy in doped structures indicates the strongest adsorption of formamide in doped structures than pristine SWCNT. The results also indicates that formamide adsorption does not change the electronic properties of pure SWCNT and N-doped SWCNT. However, it removes the band gaps of Al- and Al/N-doped SWCNT. Therefore, the modified nanotubes convert from semiconductor to metallic character which can be detected using electronic devices. Moreover, formamide adsorption induces some magnetization to Al-doped SWCNT and Al/N co-doped which can be utilized in spin transport devices. These findings suggest that Al/N co-doped and Al-doped SWCNTs are good candidates for detecting HCONH2 molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

All data, materials, and codes used in this work are strictly following their terms and conditions for publication.

References

  1. N. Gupta, S. Gupta, M.S.K. Sharma, Carbon Lett. (2019). https://doi.org/10.1007/s42823-019-00068-2

    Article  Google Scholar 

  2. K. Funayama, J. Hirotani, A. Miura, H. Tanaka, Y. Ohno, AIP Adv. 10(1063/5), 0058300 (2021)

    Google Scholar 

  3. X. He, H. Htoon, S.K. Doorn, W.H.P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, C. Voisin, Nat. Mater. (2018). https://doi.org/10.1038/s41563-018-0109-2

    Article  Google Scholar 

  4. G.A. Rivas, M.C. Rodríguez, M.D. Rubianes, F.A. Gutierrez, M. Eguílaz, P.R. Dalmasso et al., Appl. Mater. Today (2017). https://doi.org/10.1016/j.apmt.2017.10.005

    Article  Google Scholar 

  5. T. Han, A. Nag et al., Sens Actuator A Phys. (2019). https://doi.org/10.1016/j.sna.2019.03.053

    Article  Google Scholar 

  6. M. Poonia, V. Manjuladevi, R.K. Gupta, S.K. Gupta, J. Singh, P.B. Agarwa, J. Akhta, Sci. Adv. Mater. (2015). https://doi.org/10.1166/sam.2015.1989

    Article  Google Scholar 

  7. S. Demir, M.F. Fellah, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144141

    Article  Google Scholar 

  8. R. Chadar, O. Afzal, Colloids Surf. B (2021). https://doi.org/10.1016/j.colsurfb.2021.112044

    Article  Google Scholar 

  9. M.S. Parvaiz, K.A. Shah, H. Alrobei, G.N. Dar, F.A. Khanday, S. Muzaffar Ali Andrabi et al., Comput. Theor. Chem.. Theor. Chem. (2021). https://doi.org/10.1016/j.comptc.2021.113402

    Article  Google Scholar 

  10. V. Schroeder, S. Savagatrup, T.M. Swager, Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.8b00340

    Article  Google Scholar 

  11. Y. Seekaew, A. Wisitsoraat, C. Wongchoosuk, Diam. Relat. Mater. (2023). https://doi.org/10.1016/j.diamond.2022.109630

    Article  Google Scholar 

  12. N. Saikia, R.C. Deka, J. Mol. Model. (2013). https://doi.org/10.1007/s00894-012-1534-9

    Article  Google Scholar 

  13. Y. Li, M. Hodak, W. Lu, J. Bernholc, Carbon (2016). https://doi.org/10.1016/j.carbon.2016.01.092

    Article  Google Scholar 

  14. T. Chen, L. An, X. Jia, J. Mol. Model. (2021). https://doi.org/10.1007/s00894-021-04683-7

    Article  Google Scholar 

  15. R. Behjatmanesh-Ardakani, P. Nazari, Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2021.152217

    Article  Google Scholar 

  16. N. Karimi, J.J. Sardroodi, A.E. Rastkar, J. Mol. Model. (2022). https://doi.org/10.1007/s00894-022-05296-4

    Article  Google Scholar 

  17. N.S. Anas, R.K. Dash, T.N. Rao, R. Vijay, J. Mater. Eng. Perform. (2017). https://doi.org/10.1007/s11665-017-2730-7

    Article  Google Scholar 

  18. M.D. Esrafili, S. Heydari, L. Dinparast, Struct. Chem. (2019). https://doi.org/10.1007/s11224-019-01355-4

    Article  Google Scholar 

  19. X. Zhou, C. Zhao, C. Chen, J. Chen, Y. Li, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.146595

    Article  Google Scholar 

  20. J. Deb, D. Paul, U. Sarkar, P.W. Ayers, J. Mol. Model. (2018). https://doi.org/10.1007/s00894-018-3793-6

    Article  Google Scholar 

  21. İ Muz, S. Alaei, M. Kurban, Mater. Today Commun. (2021). https://doi.org/10.1016/j.mtcomm.2021.102252

    Article  Google Scholar 

  22. İ Muz, H. Kurban, M. Kurban, Mater. Today Commun. (2021). https://doi.org/10.1016/j.mtcomm.2021.102118

    Article  Google Scholar 

  23. M.A. Azam, F.M. Alias, L.W. Tack, J. Mol. Graph. (2017). https://doi.org/10.1016/j.jmgm.2017.05.003

    Article  Google Scholar 

  24. F.K. Fotooh, M. Nayeri, Surf. Sci. (2021). https://doi.org/10.1016/j.susc.2021.121913

    Article  Google Scholar 

  25. X. Jia, L. An, T. Chen, Adsorption (2020). https://doi.org/10.1007/s10450-020-00218-3

    Article  Google Scholar 

  26. S. Jalili, M. Jafari, J. Habibian, J. Iran. Chem. Soc. (2008). https://doi.org/10.1007/BF03246145

    Article  Google Scholar 

  27. N. Dwivedi, R.K. Shukla, S.N. Appl, Science (2020). https://doi.org/10.1007/s42452-020-2055-2

    Article  Google Scholar 

  28. M. Hamadanian, F.K. Fotooh, Comput. Mater. Sci. (2014). https://doi.org/10.1016/j.commatsci.2013.10.021

    Article  Google Scholar 

  29. G. Costanzo, R. Saladino, C. Crestini, F. Ciciriello, E. Di Mauro. (2007). https://doi.org/10.1186/1471-2148-7-S2-S1

  30. J. Shi, Z. Lou, M. Yang, Y. Zhang, H. Liu, Y. Meng, Surf. Sci. (2014). https://doi.org/10.1186/1471-2148-7-S2-S110.1016/j.susc.2014.01.019

    Article  Google Scholar 

  31. İ Muz, F. Göktaş, Physica E Low Dimens. Syst. Nanostruct. (2022). https://doi.org/10.1016/j.physe.2021.114950

    Article  Google Scholar 

  32. M. Afshar, R.R. Khojasteh, R. Ahmadi, Nanotubes in drug. Chem. Commun. (2020)

  33. J. Kaur, G.S. Gill, K. Jeet, Characterization and biology of nanomaterials for drug delivery (2019). https://doi.org/10.1016/B978-0-12-814031-4.00005-2

  34. İ Muz, Mater. Today Commun. (2022). https://doi.org/10.1016/j.mtcomm.2022.103798

    Article  Google Scholar 

  35. M. Kurban, İ Muz, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.113209

    Article  Google Scholar 

  36. İ Muz, M. Kurban, J. Mol. Liq. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116181

    Article  Google Scholar 

  37. A. Hosseinian, E. Vessally, A. Bekhradnia, K. Nejati, G. Rahimpour, Thin Solid Films (2017). https://doi.org/10.1016/j.tsf.2017.08.049

    Article  Google Scholar 

  38. P.R. McGill, T. Söhnel, J. Phys. Chem. C (2012). https://doi.org/10.1021/jp302729e

    Article  Google Scholar 

  39. W. Reckien, B. Kirchner, F. Janetzko, T. Bredow, J. Phys. Chem. C (2009). https://doi.org/10.1021/jp811146m

    Article  Google Scholar 

  40. W. Reckien, B. Kirchner, F. Janetzko, T. Bredow, Surf. Sci. (2009). https://doi.org/10.1016/j.susc.2012.09.006

    Article  Google Scholar 

  41. B. Kiss, S. Picaud, M. Szőri, P. Jedlovszky, J. Phys. Chem. A. (2019). https://doi.org/10.1021/acs.jpca.9b00850

  42. M.D. Esrafili, R.V. Nurazar, Surf. Sci. (2015). https://doi.org/10.1016/j.susc.2015.03.015

    Article  Google Scholar 

  43. M.D. Esrafili, F.A. Rad, J. Mol. Graph. Model. (2018). https://doi.org/10.1016/j.jmgm.2018.04.004

    Article  Google Scholar 

  44. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, S. Baroni, J. Phys. Condens. Matter (2017). https://doi.org/10.1088/1361648X/aa8f79

    Article  Google Scholar 

  45. S. Grimme, J. Comput. Chem. (2006). https://doi.org/10.1002/jcc.20495

    Article  Google Scholar 

  46. K. Berland, V.R. Cooper, K. Lee, E. Schröder, T. Thonhauser, P. Hyldgaard, B.I. Lundqvist, Rep. Prog. Phys. (2015). https://doi.org/10.1088/0034-4885/78/6/066501

    Article  Google Scholar 

  47. H.J. Monkhorst, J.D. Pack, Phys. Rev. B (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  48. J. Rezac, P. Hobza, Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.6b00247

    Article  Google Scholar 

  49. F. Shiri, F. Kalantari Fotooh, M.H. Mosslemin, R. Mohebat, J. Mol. Model. (2021). https://doi.org/10.1007/s00894-021-04761-w

    Article  Google Scholar 

  50. R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, J. Mol. Struct. Theochem. (2007). https://doi.org/10.1016/j.theochem.2006.11.012

    Article  Google Scholar 

  51. M. Hamadanian, B. Khoshnevisan, F.K. Fotooh, Z. Tavangar, Comput. Mater. Sci.. Mater. Sci. (2012). https://doi.org/10.1016/j.commatsci.2012.01.001

    Article  Google Scholar 

  52. J. Deb, B. Bhattacharya, N.B. Singh, U. Sarkar, Struct. Chem. (2016). https://doi.org/10.1007/s11224-016-0747-4

    Article  Google Scholar 

  53. D.G. Nanotube, J. Deb, B. Bhattacharya, D. Paul, U. Sarkar, Graphyne nanotube. Phys. E Low-Dimens. Syst. (2016). https://doi.org/10.1016/j.physe.2016.08.006

    Article  Google Scholar 

  54. J. Deb, D. Paul, D. Pegu, U. Sarkar, D.E.B. Jyotirmoy, P.A.U.L. Debolina, P.E.G.U. David, Acta Phys. Chim. Sin. (2018). https://doi.org/10.3866/PKU.WHXB201710161

    Article  Google Scholar 

  55. F. Nattagh, S. Hosseini, M.D., J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.117459

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Yazd for providing computing facilities and time.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M. ghafari: software, investigation and interpretation of data, and writing and drafting the manuscript. H. Mohammadi-Manesh: conceptualization, interpretation of data, drafting the manuscript, revising the manuscript, and writing the text and the references of this work. F. Kalantari Fotooh: writing—review and editing.

Corresponding author

Correspondence to Hossein Mohammadi-Manesh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, M., Mohammadi-Manesh, H. & Fotooh, F.K. Adsorption of formamide on pure, Al-, N-doped, and Al/N co-doped (8, 0) single-wall carbon nanotubes: a DFT study. Eur. Phys. J. B 97, 38 (2024). https://doi.org/10.1140/epjb/s10051-024-00679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00679-3

Navigation