Skip to main content
Log in

Mechanical and thermodynamic properties of rare-earth-based Ni intermetallic compounds crystallized in the C15b structure: an Ab-initio study

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This study investigates the mechanical properties and structural and thermodynamic stabilities of RENi5 compounds (RE: rare earth metals, with RE = Y, La, and Gd) in the AuBe5 (C15b) structure. Intermetallics of this type have potential applications in hydrogen battery technology, but their properties are not well understood. Using first-principles calculations, we calculated the mechanical properties, including the shear modulus, Young’s modulus, bulk modulus, Poisson’s ratio, Vickers hardness, and ductility of these compounds. Our calculations revealed that these compounds are both mechanically and thermodynamically stable. Additionally, our results suggest that all compounds are ductile. The YNi5 compound has the highest Debye temperature, indicating greater covalent Y-Ni bonds and greater hardness. We analyzed these findings with respect to the electronic structure of the compounds by calculating the density of states (DOS) and charge density distribution. These insights into the mechanical, thermodynamic, and electronic properties of RENi5 intermetallics can inform the design and development of novel materials with improved properties in hydrogen batteries, mechanical applications or other related fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author, Mohammed Benaissa, upon reasonable request].

References

  1. V.A. Yartys, M.V. Lototskyy, Laves type intermetallic compounds as hydrogen storage materials: a review. J. Alloy. Compd. 916, 165219 (2022). https://doi.org/10.1016/j.jallcom.2022.165219

    Article  Google Scholar 

  2. O. Ouadah, F. Saidi, M.E.A. Miloudi, O. Ziani, A. Mahmoudi, S. Nasr, DFT investigation analyzed with data mining technique of rare-earth dihydrides REH2 for hydrogen storage. Int. J. Hydrogen Energy 46, 32962–32973 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.137

    Article  Google Scholar 

  3. J.B. Ponsoni, V. Aranda, T.S. Nascimento, R.B. Strozi, W.J. Botta, G. Zepon, Design of multicomponent alloys with C14 laves phase structure for hydrogen storage assisted by computational thermodynamic. Acta Mater. Mater. 240, 118317 (2022). https://doi.org/10.1016/j.actamat.2022.118317

    Article  Google Scholar 

  4. L.-S. Hsu, Y.-K. Wang, Y.-L. Tai, J.-F. Lee, Photoabsorption study of the electronic structures of Ni3Al, Ni3Ga, Ni3In, and Ni13In9. J. Alloy. Compd. 413, 11–16 (2006). https://doi.org/10.1016/j.jallcom.2005.06.065

    Article  Google Scholar 

  5. A.A. Mousa, S. Al-Qaisi, M. Abu-Jafar, S. Al Azar, R. Jaradat, J.M. Khalifeh, T. Ouahrani, R. Khenata, Ab initio studies of the structural, elastic, electronic and optical properties of the Ni3In intermetallic compound. Mater. Chem. Phys. 249, 123104 (2020). https://doi.org/10.1016/j.matchemphys.2020.123104

    Article  Google Scholar 

  6. J.-F. Jia, S.-J. Ji, N.-T. Suen, Boundary in electrocatalytic hydrogen evolution reaction: from single metal to binary intermetallic compounds. Catal. Commun.. Commun. 162, 106378 (2022). https://doi.org/10.1016/j.catcom.2021.106378

    Article  Google Scholar 

  7. X. Tang, H. Sepehri-Amin, N. Terada, A. Martin-Cid, I. Kurniawan, S. Kobayashi, Y. Kotani, H. Takeya, J. Lai, Y. Matsushita, T. Ohkubo, Y. Miura, T. Nakamura, K. Hono, Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction. Nat. Commun.Commun. 13, 1817 (2022). https://doi.org/10.1038/s41467-022-29340-2

    Article  ADS  Google Scholar 

  8. A. Lopatina, S. Watanabe, K. Futatsuka, N. Kumazawa, Y. Hirano, K. Matsunaga, S. Abe, K. Matsumoto, A.T. Saito, H. Takeya, T. Numazawa, Thermal and electrical conductivity of magnetic refrigerant RT2 Laves compounds (R: Rare earth; T: Al, Ni) for magnetic refrigerator application. Cryogenics 126, 103519 (2022). https://doi.org/10.1016/j.cryogenics.2022.103519

    Article  Google Scholar 

  9. L. Deng, S. Lu, X. Xiao, J. JiangFeng, High temperature flow behavior and deformation mechanism of Nb-22.5Cr-2.5Mo alloy. J. Mater. Res. Technol. 21, 2653–2662 (2022). https://doi.org/10.1016/j.jmrt.2022.10.078

    Article  Google Scholar 

  10. M. Benaissa, G. Khebichat, A. Sekkal, Site-dependent mechanical properties of 3d transition metal-doped MnV intrinsic ductile intermetallic: first-principles and data mining study. Comput. Mater. Sci.. Mater. Sci. 215, 111801 (2022). https://doi.org/10.1016/j.commatsci.2022.111801

    Article  Google Scholar 

  11. J. Tuo, R. Zhang, Z. Cai, P. Du, Y. Yu, Effect of annealing temperature on the microstructure and mechanical properties of laves phase reinforced FeCrAl alloy thin-walled tubes. J. Nucl. Mater.Nucl. Mater. 561, 153561 (2022). https://doi.org/10.1016/j.jnucmat.2022.153561

    Article  Google Scholar 

  12. A. Sekkal, A. Benzair, T. Ouahrani, H.I. Faraoun, G. Merad, H. Aourag, C. Esling, Mechanical properties and bonding feature of the YAg, CeAg, HoCu, LaAg, LaZn, and LaMg rare-earth intermetallic compounds: an ab initio study. Intermetallics 45, 65–70 (2014). https://doi.org/10.1016/j.intermet.2013.10.007

    Article  Google Scholar 

  13. F. Stein, A. Leineweber, Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties. J. Mater. Sci. 56, 5321–5427 (2021). https://doi.org/10.1007/s10853-020-05509-2

    Article  ADS  Google Scholar 

  14. M. Okada, T. Kuriiwa, A. Kamegawa, H. Takamura, Role of intermetallics in hydrogen storage materials. Mater. Sci. Eng. A 329–331, 305–312 (2002). https://doi.org/10.1016/S0921-5093(01)01580-5

    Article  Google Scholar 

  15. F. Cuevas, J.-M. Joubert, M. Latroche, A. Percheron-Guégan, Intermetallic compounds as negative electrodes of Ni/MH batteries. Appl. Phys. A 72, 225–238 (2001). https://doi.org/10.1007/s003390100775

    Article  ADS  Google Scholar 

  16. H. Si Abdelkader, Effects of oxygen migration on Al/La0.33Sr0.67FeO3 interface for resistance random access memory applications: a theoretical study. Bull. Mater. Sci. 46, 172 (2023). https://doi.org/10.1007/s12034-023-03015-0

    Article  Google Scholar 

  17. M. Benaissa, Theoretical investigation of structural, energetic and magnetic properties of B2 type MnM alloys. DFT Data Min. Approach Comput. Condens. Matter 31, e00656 (2022). https://doi.org/10.1016/j.cocom.2022.e00656

    Article  Google Scholar 

  18. O. Ouadah, M. Benaissa, M. El Amine Miloudi, T. Hidouri, I.S. Yahia, H.Y. Zahran, Tailoring the electronic, optical and mechanical properties of KMgH3 and RbCaH3 perovskite hydrides without and with Samarium. J. Solid State Chem. 309, 122952 (2022). https://doi.org/10.1016/j.jssc.2022.122952

    Article  Google Scholar 

  19. H.S. Abdelkader, B. Berrahil, G. Merad, Effect of Ca doping on structural, magnetic and electronic properties of TbMnO3. J. Magn. Magn. Mater.Magn. Magn. Mater. 477, 77–82 (2019). https://doi.org/10.1016/j.jmmm.2019.01.022

    Article  ADS  Google Scholar 

  20. M. Azmat Ali, A. Khan, S. Haider Khan, T. Ouahrani, G. Murtaza, R. Khenata, S. Bin Omran, First principles study of Cu based Delafossite Transparent Conducting Oxides CuXO2 (X=Al, Ga, In, B, La, Sc, Y). Mater. Sci. Semicond. Process.Semicond. Process. 38, 57–66 (2015). https://doi.org/10.1016/j.mssp.2015.03.038

    Article  Google Scholar 

  21. H.S. Abdelkader, A. Azzouz, M. Benaissa, Insight into the electronic, magnetic and optical properties of orthorhombic perovskite PrMn1-xFexO3 from first-principles calculations. Eur. Phys. J. B. 96, 69 (2023). https://doi.org/10.1140/epjb/s10051-023-00531-0

    Article  ADS  Google Scholar 

  22. A. Sekkal, F. Saidi, A. Benzair, M. Sahlaoui, C. Esling, J.M. Raulot, Structural and physical properties of DyCu, NdAg, LaCd, YIn, ErCu, ErAg, and ErAu rare-earth intermetallic compounds: ab initio investigations analyzed by data mining technique. Phys. Solid State 62, 2305–2317 (2020). https://doi.org/10.1134/S1063783420120240

    Article  ADS  Google Scholar 

  23. M.K. Benabadji, H.I. Faraoun, H. Si Abdelkader, M. Dergal, E.K. Hlil, G. Merad, Structural stability and electronic structure study of YCu2–YZn2 Laves phases by first-principles calculations. Comput. Mater. Sci.. Mater. Sci. 77, 366–371 (2013). https://doi.org/10.1016/j.commatsci.2013.04.067

    Article  Google Scholar 

  24. F. Saidi, M.K. Benabadji, H.I. Faraoun, H. Aourag, Structural and mechanical properties of Laves phases YCu2 and YZn2: first principles calculation analyzed with data mining approach. Comput. Mater. Sci.. Mater. Sci. 89, 176–181 (2014). https://doi.org/10.1016/j.commatsci.2014.03.053

    Article  Google Scholar 

  25. M. Williams, M.V. Lototsky, V.M. Linkov, A.N. Nechaev, J.K. Solberg, V.A. Yartys, Nanostructured surface coatings for the improvement of AB5-type hydrogen storage intermetallics. Int. J. Energy Res. 33, 1171–1179 (2009). https://doi.org/10.1002/er.1609

    Article  Google Scholar 

  26. T. Sakai, M. Matsuoka, C. Iwakura, Chapter 142 Rare earth intermetallics for metal-hydrogen batteries, in: Handbook on the Physics and Chemistry of Rare Earths, Elsevier, 1995: pp. 133–178. https://doi.org/10.1016/S0168-1273(05)80111-4.

  27. M.S.S. Brooks, L. Nordström, B. Johansson, Rare-earth transition-metal intermetallics. Physica B B 172, 95–100 (1991). https://doi.org/10.1016/0921-4526(91)90421-A

    Article  ADS  Google Scholar 

  28. J.-M. Joubert, R. Černý, M. Latroche, A. Percheron-Guégan, K. Yvon, Compressibility and thermal expansion of LaNi5 and its substitutional derivatives (LaNi5−xMx; M=Mn, Al, Co). Intermetallics 13, 227–231 (2005). https://doi.org/10.1016/j.intermet.2004.08.004

    Article  Google Scholar 

  29. Y.V. Knyazev, Y.I. Kuz’min, A.G. Kuchin, A.V. Lukoyanov, I.A. Nekrasov, Optical absorption and structure of energy bands of GdNi5−xCu x intermetallic compounds. Phys. Metals Metallogr. 107, 173–178 (2009). https://doi.org/10.1134/S0031918X09020094

    Article  ADS  Google Scholar 

  30. K. Uebayashi, K. Terao, H. Yamada, First principle calculation for preferential site occupation of 3d transition-metal atoms in YCo5 and YNi5. J. Alloy. Compd. 346, 47–49 (2002). https://doi.org/10.1016/S0925-8388(02)00516-9

    Article  Google Scholar 

  31. G.I. Miletić, Ž Blažina, The electronic structure of the YNi5, YNi4Al and YNi3Al2 intermetallic compounds and their model monohydrides. J. Alloy. Compd. 335, 81–90 (2002). https://doi.org/10.1016/S0925-8388(01)01847-3

    Article  Google Scholar 

  32. S.H. Zhou, R.E. Napolitano, Phase stability for the Cu–Zr system: first-principles, experiments and solution-based modeling. Acta Mater. Mater. 58, 2186–2196 (2010). https://doi.org/10.1016/j.actamat.2009.12.004

    Article  ADS  Google Scholar 

  33. O. Levy, G.L.W. Hart, S. Curtarolo, Hafnium binary alloys from experiments and first principles. Acta Mater. Mater. 58, 2887–2897 (2010). https://doi.org/10.1016/j.actamat.2010.01.017

    Article  ADS  Google Scholar 

  34. L.T. Tai, B.T. Hang, N.P. Thuy, T.D. Hien, Magnetic properties of LaNi5-based compounds. J. Magn. Magn. Mater.Magn. Magn. Mater. 262, 485–489 (2003). https://doi.org/10.1016/S0304-8853(03)00082-9

    Article  ADS  Google Scholar 

  35. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  MathSciNet  Google Scholar 

  36. W. Kohn, L.J. Sham, Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. 137, A1697–A1705 (1965). https://doi.org/10.1103/PhysRev.137.A1697

    Article  ADS  Google Scholar 

  37. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  38. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  40. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  41. J.D. Pack, H.J. Monkhorst, “special points for Brillouin-zone integrations”—a reply. Phys. Rev. B 16, 1748–1749 (1977). https://doi.org/10.1103/PhysRevB.16.1748

    Article  ADS  Google Scholar 

  42. S.L. Dudarev, L.-M. Peng, S.Y. Savrasov, J.-M. Zuo, Correlation effects in the ground-state charge density of Mott insulating NiO: a comparison of ab initio calculations and high-energy electron diffraction measurements. Phys. Rev. B 61, 2506–2512 (2000). https://doi.org/10.1103/PhysRevB.61.2506

    Article  ADS  Google Scholar 

  43. S. Laubach, P.C. Schmidt, A. Thißen, F.J. Fernandez-Madrigal, Q.-H. Wu, W. Jaegermann, M. Klemm, S. Horn, Theoretical and experimental determination of the electronic structure of V2O5, reduced V2O5–x and sodium intercalated NaV2O5. Phys. Chem. Chem. Phys. 9, 2564–2576 (2007). https://doi.org/10.1039/B612489E

    Article  Google Scholar 

  44. B.J. Morgan, G.W. Watson, A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf. Sci. 601, 5034–5041 (2007). https://doi.org/10.1016/j.susc.2007.08.025

    Article  ADS  Google Scholar 

  45. D.O. Scanlon, A. Walsh, B.J. Morgan, G.W. Watson, An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. J. Phys. Chem. C 112, 9903–9911 (2008). https://doi.org/10.1021/jp711334f

    Article  Google Scholar 

  46. S. Lutfalla, V. Shapovalov, A.T. Bell, Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput.Comput. 7, 2218–2223 (2011). https://doi.org/10.1021/ct200202g

    Article  Google Scholar 

  47. L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 73, 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107

    Article  ADS  Google Scholar 

  48. V.N. Jafarova, G.S. Orudzhev, Structural and electronic properties of ZnO: a first-principles density-functional theory study within LDA(GGA) and LDA(GGA)+U methods. Solid State Commun.Commun. 325, 114166 (2021). https://doi.org/10.1016/j.ssc.2020.114166

    Article  Google Scholar 

  49. C. Loschen, J. Carrasco, K.M. Neyman, F. Illas, First-principles LDA + U and GGA + U study of cerium oxides: dependence on the effective U parameter. Phys. Rev. B 75, 035115 (2007). https://doi.org/10.1103/PhysRevB.75.035115

    Article  ADS  Google Scholar 

  50. M. Yu, S. Yang, C. Wu, N. Marom, Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization. Npj Comput Mater 6, 180 (2020). https://doi.org/10.1038/s41524-020-00446-9

    Article  ADS  Google Scholar 

  51. V.N. Staroverov, G.E. Scuseria, J. Tao, J.P. Perdew, Tests of a ladder of density functionals for bulk solids and surfaces. Phys. Rev. B 69, 075102 (2004). https://doi.org/10.1103/PhysRevB.69.075102

    Article  ADS  Google Scholar 

  52. J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003). https://doi.org/10.1103/PhysRevLett.91.146401

    Article  ADS  Google Scholar 

  53. Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006). https://doi.org/10.1103/PhysRevB.73.235116

    Article  ADS  Google Scholar 

  54. Y.-L. Lee, M.J. Gadre, Y. Shao-Horn, D. Morgan, Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO 3 (B = Cr, Mn, Fe, Co and Ni). Phys. Chem. Chem. Phys. 17, 21643–21663 (2015). https://doi.org/10.1039/C5CP02834E

    Article  Google Scholar 

  55. T. Cai, H. Han, Y. Yu, T. Gao, J. Du, L. Hao, Study on the ground state of NiO: The LSDA (GGA)+U method. Physica B B 404, 89–94 (2009). https://doi.org/10.1016/j.physb.2008.10.009

    Article  ADS  Google Scholar 

  56. H. Xu, D. Cheng, D. Cao, X.C. Zeng, A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal.Catal. 1, 339–348 (2018). https://doi.org/10.1038/s41929-018-0063-z

    Article  Google Scholar 

  57. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr.Crystallogr. 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016

    Article  ADS  Google Scholar 

  58. K. Matsunaga, T. Tanaka, T. Yamamoto, Y. Ikuhara, First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 085110 (2003). https://doi.org/10.1103/PhysRevB.68.085110

    Article  ADS  Google Scholar 

  59. C.M. Fang, M.A. van Huis, H.W. Zandbergen, Stability and structures of the CFCC-TmC phases: a first-principles study. Comput. Mater. Sci.. Mater. Sci. 51, 146–150 (2012). https://doi.org/10.1016/j.commatsci.2011.07.017

    Article  Google Scholar 

  60. H. Putz, K. Brandenburg, Pearson’s crystal data, Crystal Structure Database for Inorganic Compounds, CD-ROM Software Version 1 (2007).

  61. O.I. Malyi, G.M. Dalpian, X.-G. Zhao, Z. Wang, A. Zunger, Realization of predicted exotic materials: the burden of proof. Mater. Today 32, 35–45 (2020). https://doi.org/10.1016/j.mattod.2019.08.003

    Article  Google Scholar 

  62. H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, Y. Kwon, Cohesion energetics of carbon allotropes: quantum Monte Carlo study. J. Chem. Phys. 140, 114702 (2014). https://doi.org/10.1063/1.4867544

    Article  ADS  Google Scholar 

  63. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  Google Scholar 

  64. M.K. Benabadji, A. Mahmoudi, D. Bouabdallah, F. Saidi, H.I. Faraoun, G. Merad, Investigation of electronic and elastic properties of YNi2-xMx (M: Fe, Co, Cu and Zn): Ab initio calculations analyzed with data mining approach. Adv. Modell. Anal. A. (2018). https://doi.org/10.18280/ama_a.550104

    Article  Google Scholar 

  65. M. Benaissa, H.S. Abdelkader, A. Madouri, M.K. Benabadji, Ab initio comparative study of B2–MnX intermetallics with X = V, Nb, Ta. Eur. Phys. J. B. 95, 23 (2022). https://doi.org/10.1140/epjb/s10051-021-00268-8

    Article  ADS  Google Scholar 

  66. M. Born, On the stability of crystal lattices. I. Math. Proc. Camb. Philos. Soc.Camb. Philos. Soc. 36, 160–172 (1940). https://doi.org/10.1017/S0305004100017138

    Article  ADS  MathSciNet  Google Scholar 

  67. S. Boucetta, Structural and elastic properties of Mg3CuH0.6 ternary hydride by ab initio study. J. Magn. Alloys 6, 90–94 (2018). https://doi.org/10.1016/j.jma.2018.02.002

    Article  Google Scholar 

  68. W. Voigt, Lehrbuch der Kristallphysik, Taubner, Taubner, Leipzig (1928).

  69. A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik 9, 49–58 (1929). https://doi.org/10.1002/zamm.19290090104

    Article  ADS  Google Scholar 

  70. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349–354 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  71. W. Bao, D. Liu, Y. Duan, A first-principles prediction of anisotropic elasticity and thermal properties of potential superhard WB3. Ceram. Int. 44, 14053–14062 (2018). https://doi.org/10.1016/j.ceramint.2018.05.002

    Article  Google Scholar 

  72. M. Debbarma, S. Das, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, S. Chattopadhyaya, Density functional calculations of elastic and thermal properties of zinc-blende HgSxSe1−x, HgSxTe1−x and HgSexTe1−x ternary alloys. Comput. Condens. Matter 24, e00482 (2020). https://doi.org/10.1016/j.cocom.2020.e00482

    Article  Google Scholar 

  73. S.F. Pugh, XCII, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  74. D. Nguyenmanh, V. Vitek, A. Horsfield, Environmental dependence of bonding: a challenge for modelling of intermetallics and fusion materials. Prog. Mater. Sci.. Mater. Sci. 52, 255–298 (2007). https://doi.org/10.1016/j.pmatsci.2006.10.010

    Article  Google Scholar 

  75. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992). https://doi.org/10.1179/mst.1992.8.4.345

    Article  ADS  Google Scholar 

  76. C.M. Zener, S. Siegel, Elasticity and anelasticity of metals. J. Phys. Colloid Chem. 53, 1468–1468 (1949). https://doi.org/10.1021/j150474a017

    Article  Google Scholar 

  77. E. Schreiber, O.L. Anderson, N. Soga, others, Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973)

    Google Scholar 

  78. P. Wachter, M. Filzmoser, J. Rebizant, Electronic and elastic properties of the light actinide tellurides. Physica B B 293, 199–223 (2001). https://doi.org/10.1016/S0921-4526(00)00575-5

    Article  ADS  Google Scholar 

  79. O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963). https://doi.org/10.1016/0022-3697(63)90067-2

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by “La Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT)” and “Le Centre National de la Recherche Scientifique (CNRS)”.

Author information

Authors and Affiliations

Authors

Contributions

Amine MADOURI: conceptualization, methodology, software, validation, formal analysis, investigation, resources, writing and original draft preparation and visualization. Mostafa Kerim BENABADJI: supervisor, validation & review. Mohammed BENAISSA: software, validation, writing and original draft preparation. Benali RERBAL: co-supervisor, validation. Hayet SI ABDELKADER: methodology, visualization, validation, writing, review & editing.

Corresponding author

Correspondence to Mohammed Benaissa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 86 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madouri, A., Benabadji, M.K., Benaissa, M. et al. Mechanical and thermodynamic properties of rare-earth-based Ni intermetallic compounds crystallized in the C15b structure: an Ab-initio study. Eur. Phys. J. B 97, 37 (2024). https://doi.org/10.1140/epjb/s10051-024-00673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00673-9

Navigation