Skip to main content

Advertisement

Log in

Mechanical properties, thermal conductivity, and optical properties of a novel layered compound Bi3O2S2Cl under pressure

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structure stability, mechanical properties, thermal conductivity, and optical properties of a novel layered tetragonal compound Bi3O2S2Cl have been investigated at pressure up to 25 GPa by using first-principles calculations based on density functional theory in this work. The lattice parameters of Bi3O2S2Cl calculated by Perdew–Burke–Ernzerhof functional in the ground state agree well with the experimental results. Moreover, the calculated phonon dispersion curves and elastic constants Cij suggest that Bi3O2S2Cl is mechanically and dynamically stable from 0 to 25 GPa. The bulk modulus B and the shear modulus G calculated from Cij at different pressures demonstrate that the ductility of Bi3O2S2Cl is increased by external pressure. Furthermore, the influence of pressure on longitudinal sound velocity vl, transverse sound velocity vt, aggregate acoustic velocities vm, Debye temperature ΘD, Poisson’s ratio σ, and Grüneisen parameter γ are systematically studied. Meanwhile, the elastic anisotropy index AU and the shear anisotropy factors A1, A2, and A3 are also investigated, together with the directional linear compressibility and Young’s modulus under pressure from 0 to 25 GPa. The results show that the anisotropy of Bi3O2S2Cl increases under external pressure. Afterward, we further evaluated the minimum thermal conductivity of Bi3O2S2Cl under pressure by using both Clark’s model and Cahill’s model. At ambient pressure, it exhibits a relatively low thermal conductivity of 0.365 Wm−1 K−1. Although the minimum thermal conductivity increases with the increase of pressure, it remains a potential thermal barrier coating material in extreme environments. Finally, the calculations of the optical properties of Bi3O2S2Cl under different pressures show that this new layered tetragonal compound is a promising energy harvesting and optoelectrical material in extreme environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in this manuscript are available upon request by contacting the corresponding author.

References

  1. S. Mishra, S. Satpathy, O. Jepsen, J. Phys. Condens. Matter 9, 461 (1997)

    ADS  Google Scholar 

  2. Y. Chen, J.G. Analytis, J.H. Chu, Z. Liu, S.K. Mo, X.L. Qi, H. Zhang, D. Lu, X. Dai, Z. Fang, Science 325, 178 (2009)

    ADS  Google Scholar 

  3. X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, M. Niino, Appl. Phys. Lett. 90, 012102 (2007)

    ADS  Google Scholar 

  4. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Nature 413, 597 (2001)

    ADS  Google Scholar 

  5. Y. Zhang, K. He, C.Z. Chang, C.L. Song, L.L. Wang, X. Chen, J.F. Jia, Z. Fang, X. Dai, W.Y. Shan, Nat. Phys. 6, 584 (2010)

    Google Scholar 

  6. K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Appl. Catal. B 68, 125 (2006)

    Google Scholar 

  7. Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, O. Miura, Phys. Rev. B 86, 220510 (2012)

    ADS  Google Scholar 

  8. J. Shao, Z. Liu, X. Yao, L. Pi, S. Tan, C. Zhang, Y. Zhang, Phys. Status. Solidi.-R 8, 845 (2014)

    Google Scholar 

  9. Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012)

    ADS  Google Scholar 

  10. X. Lin, X. Ni, B. Chen, X. Xu, X. Yang, J. Dai, Y. Li, X. Yang, Y. Luo, Q. Tao, Phys. Rev. B 87, 020504 (2013)

    ADS  Google Scholar 

  11. B.B. Ruan, K. Zhao, Q.G. Mu, B.J. Pan, T. Liu, H.X. Yang, J.Q. Li, G.F. Chen, Z.A. Ren, J. Am. Chem. Soc. 141, 3404 (2019)

    Google Scholar 

  12. S.K. Singh, A. Kumar, B. Gahtori, G. Sharma, S. Patnaik, V.P. Awana, J. Am. Chem. Soc. 134, 16504 (2012)

    Google Scholar 

  13. S. Tan, L. Li, Y. Liu, P. Tong, B. Zhao, W. Lu, Y. Sun, Phys. C 483, 94 (2012)

    ADS  Google Scholar 

  14. Y. Mizuguchi, A. Omachi, Y. Goto, Y. Kamihara, M. Matoba, T. Hiroi, J. Kajitani, O. Miura, J. Appl. Phys. 116, 16391 (2014)

    Google Scholar 

  15. R. Masrour, L. Bahmad, E.K. Hlil, M. Hamedoun, A. Benyoussef, J. Supercond. Nov. Magn. 28, 165–168 (2015)

    Google Scholar 

  16. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El Moussaoui, J. Supercond. Nov. Magn. 28, 2115–2119 (2015)

    Google Scholar 

  17. O. Ramdane, M. Labidi, R. Masrour, S. Labidi, M. Ellouze, R. Rehamnia, J. Supercond. Nov. Magn. 36, 373–387 (2023)

    Google Scholar 

  18. M. Chaabouni, E.K. Ellouze, R. Hlil, R.J. Masrour, J. Mater. Sci. Mater. Electron. 33, 23524–23541 (2022)

    Google Scholar 

  19. M. Bessimou, R. Masrour, Philos. Mag. 103, 56–66 (2023)

    ADS  Google Scholar 

  20. Y. El Krimi, R. Masrour, Mater. Sci. Eng. B 284, 115906 (2022)

    Google Scholar 

  21. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El Moussaoui, J. Magn. Magn. Mater 361, 197–200 (2014)

    ADS  Google Scholar 

  22. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El Moussaoui, Phys. A 414, 249–253 (2014)

    Google Scholar 

  23. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El moussaoui, J. Magn. Magn. Mater 374, 116–119 (2015)

    ADS  Google Scholar 

  24. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, A. Boutahar, H. Lassri, J. Magn. Magn. Mater. 393, 600–603 (2015)

    ADS  Google Scholar 

  25. R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. Elmoussaoui, J. Magn. Magn. Mater. 354, 159–162 (2014)

    ADS  Google Scholar 

  26. N.N. Jiang, Y. Xie, S.F. Wang, Y.L. Song, L.Y. Chen, W. Han, X.W. Jin, Z.X. Zhou, Z.X. Yan, Appl. Surf. Sci 623, 157007 (2023)

    Google Scholar 

  27. M.A. Hadi, S.K. Mitro, M. Rubel, S.H. Naqib, A. Islam, (2020) https://www.researchgate.net/publication/342065576

  28. D. Horlait, S. Grasso, A. Chroneos, W.E.J. Lee, Mater. Res. Lett. 4, 137 (2016)

    Google Scholar 

  29. Y. Zhou, Z. Sun, J. Eur. Ceram. Soc. 21, 1007 (2001)

    Google Scholar 

  30. M. Barsoum, T. El-Raghy, M. Ali, Metall. Mater. Trans. A 31, 1857 (2000)

    Google Scholar 

  31. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    ADS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  33. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  34. V. Jovic, B. Jovic, S. Gupta, T. El-Raghy, M. Barsoum, Corros. Sci. 48, 4274 (2006)

    Google Scholar 

  35. Y.X. Wang, H. Wu, Y.Y. Liu, H. Wang, X.R. Chen, H.Y. Geng, Crystals 12, 1762 (2022)

    Google Scholar 

  36. H. Wu, Y.X. Wang, Z.X. Yan, W. Liu, Z.Q. Wang, J.B. Gu, Appl. Phys. A 129, 175 (2023)

    ADS  Google Scholar 

  37. G. Sin’Ko, N. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002)

    ADS  Google Scholar 

  38. G. Sin’Ko, N. Smirnov, Phys. Rev. B 71, 214108 (2005)

    ADS  Google Scholar 

  39. D.M. Teter, MRS Bull. 23, 22 (1998)

    Google Scholar 

  40. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)

    ADS  Google Scholar 

  41. A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929)

    Google Scholar 

  42. S. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  43. V. Tvergaard, J.W. Hutchinson, J. Am. Ceram. Soc. 71, 157 (1988)

    ADS  Google Scholar 

  44. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008)

    ADS  Google Scholar 

  45. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998)

    ADS  Google Scholar 

  46. J.F. Nye, Physical properties of crystals (Clarendon Press, Oxford, 1985)

    Google Scholar 

  47. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    ADS  Google Scholar 

  48. K. Panda, K.R. Chandran, Comput. Mater. Sci. 35, 134 (2006)

    Google Scholar 

  49. Y.L. Pei, J.Q. He, J.F. Li, F. Li, Q.J. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, L.D. Zhao, NPG Asia Mater. 5, 47 (2013)

    Google Scholar 

  50. Y. Xiao, C. Chang, Y.L. Pei, D. Wu, K.L. Peng, X.Y. Zhou, S.K. Gong, J.Q. He, Y.S. Zhang, Z. Zeng, L.D. Zhao, Phys. Rev. B 94, 1 (2016)

    Google Scholar 

  51. S.C. Abrahams, F.S.L. Hsu, J. Chem. Phys. 63, 1162 (1975)

    ADS  Google Scholar 

  52. F. Chu, Y. He, D.J. Thoma, T.E. Mitchell, Scr. Metall. Mater. 33, 1295 (1995)

    Google Scholar 

  53. D.R. Clarke, Surf. Coat. Technol. 163, 67 (2003)

    Google Scholar 

  54. D.R. Clarke, C.G. Levi, Annu. Rev. Mater. Res. 33, 383 (2003)

    ADS  Google Scholar 

  55. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992)

    ADS  Google Scholar 

  56. Y. Liu, V.R. Cooper, B. Wang, H. Xiang, Q. Li, Y. Gao, J. Yang, Y. Zhou, B. Liu, Mater. Res. Lett. 7, 145 (2019)

    Google Scholar 

  57. N. Baaalla, H. Absike, Y. Ammari, E.K. Hlil, R. Masrour, A. Benyoussef, A. El Kenz, Int. J. Energy Res. 46, 9586–9601 (2022)

    Google Scholar 

  58. G. Kadim, R. Masrour, Int. J. Hydrog. 47, 25522–25530 (2022)

    Google Scholar 

  59. N. Baaalla, Y. Ammari, E.K. Hlil, R. Masrour, A.E. Kenz, A. Benyoussef, Phys. Scr. 95, 095104 (2020)

    ADS  Google Scholar 

  60. N. Baaalla, Y. Ammari, E.K. Hlil, S. Abid, R. Masrour, A. Benyoussef, A.E. Kenz, Ceram. Int. 47, 2338–2346 (2021)

    Google Scholar 

  61. N. Baaalla, H. Hemissi, E.K. Hlil, R. Masrour, A. Benyoussef, A. El Kenz, J. Mol. Struct 1246, 131153 (2021)

    Google Scholar 

  62. Z.P. Xu, Y.Z. Wang, W. Zhang, Acta Phys. Sin. 63, 289 (2014)

    Google Scholar 

  63. K.M. Wong, Results Phys. 7, 1308 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant nos. 11904282, and 11405127, the Natural Science Basic Research Program of Shaanxi under Grant no. 2022JM-039, and the Doctoral Scientific Research Foundation of Xi’an University of Science and Technology under Grant no. 2018QDJ029.

Author information

Authors and Affiliations

Authors

Contributions

WNX and YXW conceived and wrote the manuscript text. All authors were involved in the discussion of the results and the preparation of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yi X. Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W.N., Wang, Y.X., Yan, Z.X. et al. Mechanical properties, thermal conductivity, and optical properties of a novel layered compound Bi3O2S2Cl under pressure. Eur. Phys. J. B 96, 64 (2023). https://doi.org/10.1140/epjb/s10051-023-00534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00534-x

Navigation