Skip to main content
Log in

Effect of exchange-correlations and pseudopotentials on the structural and cohesive properties of fundamental refractory metals (Nb, Mo, Ta, W and Re)

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of exchange–correlation (XC) and pseudopotentials in the density functional theory (DFT)-based calculations of lattice constants and cohesive energies for five fundamental refractory metals niobium (Nb), molybdenum (Mo), tantalum (Ta), tungsten (W) and rhenium (Re) has been studied. The LDA and PBEsol XCs show an over prediction of cohesive energies by 12–23% and 2–12% respectively, when compared to the experimental results. PBE XCs produce little underestimated (2–9%) cohesive energies for Nb, Mo, W and Re with only the exception of Ta; where it overpredicts the experimental value by 2%. Whereas for the equilibrium lattice parameter, our computed values are in good agreement with the reported values, an over or under-binding of only 1–2% has been observed.

Graphical abstract

Effect of different correlation functionals on cohesive energy of refractory metals

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. P.K. Venkatesh, Ab initio density functional theory calculations in the real space. Physica B 318(2–3), 121–139 (2002). https://doi.org/10.1016/S0921-4526(02)00589-6

    Article  ADS  Google Scholar 

  2. B. Xiao, J. Feng, C.T. Zhou, J.D. Xing, X.J. Xie, Y.H. Cheng, R. Zhou, The elasticity, bond hardness and thermodynamic properties of X2B (X=Cr, Mn, Fe Co, Ni, Mo, W) investigated by DFT theory. Physica B 405(5), 1274–1278 (2010)

    Article  ADS  Google Scholar 

  3. H.R. Soni, S.K. Gupta, P.K. Jha, Ab initio total energy calculation of the dynamical stability of noble metal carbides. Physica B 406(19), 3556–3561 (2011). https://doi.org/10.1016/j.physb.2011.06.023

    Article  ADS  Google Scholar 

  4. P.H.T. Philipsen, E.J. Baerends, Cohesive energy of 3d transition metals: density functional theory atomic and bulk calculations. Phys. Rev. B 54(8), 5326–5333 (1996)

    Article  ADS  Google Scholar 

  5. X.D. Dai, Y. Kong, J.H. Li, B.X. Liu, Extended Finnis–Sinclair potential for bcc and fcc metals and alloys. J. Phys.: Condens. Matter. 18, 4527–4542 (2006). https://doi.org/10.1088/0953-8984/18/19/008

    Article  ADS  Google Scholar 

  6. B.J. Abdullah, M.S. Omar, N.S. Saadi, Q. Jiang, First-principles calculations on cohesive energy of bulk and nano Si. Int. J. Sci. Eng. Res. 6(9), 842–846 (2015)

    Google Scholar 

  7. H. Shou, R. Xie, M. Peng, Y. Duan, Y. Sun, Stability and electronic structures of the Ti–Zn intermetallic compounds: a DFT calculation. Physica B 560, 41–45 (2019). https://doi.org/10.1016/j.physb.2019.02.028

    Article  ADS  Google Scholar 

  8. T.C. Chibueze, C.M.I. Okoye, First principles study of the structural, electronic and magnetic properties of w-CoS. Physica B 554, 165–172 (2019). https://doi.org/10.1016/j.physb.2018.11.019

    Article  ADS  Google Scholar 

  9. A. Bentouaf, Y. Naceur, H. Rached, M.E.A. Belhadj, B. Aissa, Density functional theory study on the magneto-electronic, mechanical, thermal, and transport properties of a novel Co2VGa0.5Al0.5 quaternary Heusler alloy. Emerg. Mater. 5, 1819–1830 (2022). https://doi.org/10.1007/s42247-022-00393-9

    Article  Google Scholar 

  10. A. Francis, S.G. Abdu, A. Haruna, D. Eli, Computation of the cohesive energies of NaCl, SiO2 and Al using density functional theory. Phys. Sci. Int. J. 11(3), 1–9 (2016). https://doi.org/10.9734/PSIJ/2016/26479

    Article  Google Scholar 

  11. E.A. Joseph, M.F. Haque, The cohesive energy calculations of some BCC and FCC (Li, Cr, Fe, MO) lattices using density functional theory. Asian J. Phys. Chem. Sci. 1(2), 1–10 (2016). https://doi.org/10.9734/AJOPACS/2016/30695

    Article  Google Scholar 

  12. A.G. Pueyo, A. Castro, About the relation of electron–electron interaction potentials with exchange and correlation functionals. Eur. Phys. J. B 91, 105 (2018). https://doi.org/10.1140/epjb/e2018-90109-6

    Article  ADS  Google Scholar 

  13. T. Hadji, H. Khalfoun, H. Rached, Y. Guermit, A. Azzouz-Rached, D. Rached, DFT study with different exchange-correlation potentials of physical properties of the new synthesized alkali-metal based Heusler alloy. Eur. Phys. J. B 93, 214 (2020). https://doi.org/10.1140/epjb/e2020-10204-5

    Article  ADS  Google Scholar 

  14. S. Al-Qaisi, M. Mushtaq, J.S. Alzahrani, H. Alkhaldi, Z.A. Alrowaili, H. Rached, B.U. Haq, Q. Mahmood, M.S. Al-Buriahi, M. Morsi, First-principles calculations to investigate electronic, structural, optical, and thermoelectric properties of semiconducting double perovskite Ba2YBiO6. Micro NanoStruct 170, 207397 (2022). https://doi.org/10.1016/j.micrna.2022.207397

    Article  Google Scholar 

  15. A. Jain, A.J.H. McGaughey, Effect of exchange correlation on first-principle-driven lattice thermal conductivity predictions of crystalline silicon. Comput. Mater. Sci. 110, 115–120 (2015)

    Article  Google Scholar 

  16. H. Mancer, M. Caid, H. Rached, Z. Nakoul, D. Rached, Probing the effect of different exchange-correlation functionals on the optoelectronic features of chalcogenide compound Ag2O. Rev. Mex. Fis.ica (2023). https://doi.org/10.31349/RevMexFis.69.011004

    Article  Google Scholar 

  17. I.A. Gonzalez Ramirez, L.A. Alcala Varilla, J.A. Montoya, A DFT study about the effect of exchange-correlation functional on the structural and electronic properties of Anatase. J. Phys.: Conf. Ser. 1219, 012019 (2019). https://doi.org/10.1088/1742-6596/1219/012019

    Article  Google Scholar 

  18. R. Devi, B. Singh, P. Canepa, G. Sai Gautam, Effect of exchange-correlation functionals on the estimation of migration barriers in battery materials. npj Comput. Mater. 8, 160 (2022). https://doi.org/10.1038/s41524-022-00837-0

    Article  ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  20. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrow, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  21. J.P. Perdew, Accurate density functional for the energy: real-space cutoff of the gradient expansion for the exchange hole. Phys. Rev. Lett. 55, 2370 (1985). https://doi.org/10.1103/PhysRevLett.55.1665

    Article  ADS  Google Scholar 

  22. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(06), 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  ADS  Google Scholar 

  23. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33(12), 8822(R) (1986). https://doi.org/10.1103/PhysRevB.33.8822. [Erratum Phys. Rev. B 34, 7406 (1986)]

  24. A.D. Becke, Density functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 96, 2155 (1992). https://doi.org/10.1063/1.462066

    Article  ADS  Google Scholar 

  25. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  26. M. Fuchs, M. Bockstedte, E. Peblke, M. Scheffler, Pseudopotential study of binding properties of solids within generalized gradient approximations: the role of core-valence exchange correlation. Phys. Rev. B 57(04), 2134 (1998). https://doi.org/10.1103/PhysRevB.57.2134

  27. A.A. Belkacem, H. Rached, M. Caid, Y. Rached, D. Rached, N.T. Mahmoud, N. Benkhettou, The stability analysis and efficiency of the new MAX-phase compounds M3GaC2 (M:Ti or Zr): a first-principles assessment. Results Phys. 38, 105621 (2022). https://doi.org/10.1016/j.rinp.2022.105621

    Article  Google Scholar 

  28. Y. Rached, M. Caid, M. Merabet, S. Benalia, H. Rached, L. Djoudi, M. Mokhtari, D. Rached, A comprehensive computational investigations on the physical properties of TiXSb (X:Ru, Pt) half-Heusler alloys and Ti2RuPtSb2 double half-Heusler. Quantum Chem. (2022). https://doi.org/10.1002/qua.26875

    Article  Google Scholar 

  29. Y. Rached, M. Caid, H. Rached, M. Merabet, S. Benalia, S. Al-Qaisi, L. Djoudi, D. Rached, Theoretical insight into the stability, magneto-electronic and thermoelectric properties of XCrSb (X: Fe, Ni) half-Heusler alloys and their superlattices. J. Supercond. Novel Magn. 35, 875–887 (2022). https://doi.org/10.1007/s10948-021-06131-2

    Article  Google Scholar 

  30. S. Antusch, J. Reiser, J. Hoffmann, A. Onea, Refractory materials for energy applications. Energy Technol 5(7), 1064–1070 (2017). https://doi.org/10.1002/ente.201600571

    Article  Google Scholar 

  31. https://foundation.quantum-espresso.org/. Accessed 15 Oct 2022

  32. https://nisihara.wixsite.com/burai. Accessed 15 Oct 2022

  33. https://www.quantumespresso.org/pseudopotentials. Accessed 15 Oct 2022

  34. http://rruff.geo.arizona.edu/AMS/amcsd.php. Accessed 15 Sept 2022

  35. http://materialsproject.org. Accessed 15 Sept 2022

  36. H.J. Monkhorst, J.D. Pack, Special points for Brillouin zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  37. R.W.G. Wyckoff, Crystal Structures (Interscience, New York, 1963)

    MATH  Google Scholar 

  38. C. Kittle, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    Google Scholar 

  39. K. Carling et al., Vacancies in metals: from first-principles calculations to experimental data. Phys. Rev. Lett. 85, 3862–3865 (2000)

    Article  ADS  Google Scholar 

  40. R. Peverati, D.G. Truhlar, Exchange-correlation functional with good accuracy for both structural and energetic properties while depending only on the density and its gradient. J. Chem. Theory Comput. 8, 2310–2319 (2012)

    Article  Google Scholar 

  41. J.E. Elenewski, J.C. Hackett, A GGA+U approach to effective electronic correlations in thiolate ligated iron-oxo(iv) porphyrin. J. Chem. Phys. 137, 124311 (2012). https://doi.org/10.1063/1.4755290

    Article  ADS  Google Scholar 

  42. S.K. Nayak, C.J. Hung, V. Sharma, S.P. Alpay, A.M. Dongare, W.J. Brindley, R.J. Hebert, Insight into point defects and impurities in titanium from first principles. Npj Comput. Mater. 4, 11 (2018). https://doi.org/10.1038/s41524-018-0068-9

    Article  ADS  Google Scholar 

  43. D.J. Singh, W.E. Pickett, H. Krakauer, Gradient -corrected density functionals: full-potential calculations for iron. Phys. Rev. B 43(11), 628 (1991)

    Google Scholar 

  44. A.D. Beke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  ADS  Google Scholar 

  45. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author would like to acknowledge the Vice-Principal, Principal, and the management of Dhanalakshmi Srinivasan College of Engineering and Technology (DSCET) for motivation and support. Special thanks to Mrs. S. Muthuselvi and Dr. R. Gayathri for their continuous support. Finally, author would like to acknowledge Dr. Chanchal Ghosh for many useful discussions on several occasions. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutapa Ghosh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S. Effect of exchange-correlations and pseudopotentials on the structural and cohesive properties of fundamental refractory metals (Nb, Mo, Ta, W and Re). Eur. Phys. J. B 96, 57 (2023). https://doi.org/10.1140/epjb/s10051-023-00529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00529-8

Navigation