Skip to main content
Log in

Model for melting transition of twisted DNA in a thermal bath

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigated the melting transition of deoxyribonucleic acid (DNA) embedded in a Langevin fluctuation–dissipation thermal bath. Torsional effects were taken into consideration by introducing a twist angle \(\varphi \) between neighboring base pairs stacked along the molecule backbone. We use the Barbi–Cocco–Payrard model to numerically study the impact of the twist angle on the melting temperature, considering four different sequences composed of 69 base pairs. According to the outcomes of our simulation, for all heterogeneous sequences, an increase in twist angle leads to a linear rise in melting temperature with a positive slope. For angles greater than the so-called equilibrium angle, the DNA chain becomes very rigid against opening and accordingly high temperatures are required to initiate the melting process. We also investigate the opening probability of bubbles, the bubble lifetime profiles and bubble length along the different DNA sequences.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. I. H. G. S. Consortium, Nature 431, 931–945 (2004)

    Article  ADS  Google Scholar 

  2. B. Alexandrov, N.K. Voulgarakis, K.Ø. Rasmussen, A. Usheva, A.R. Bishop, J. Phys. Condens. Matter 21, 034107 (2008)

    Article  Google Scholar 

  3. B.S. Alexandrov, V. Gelev, S.W. Yoo, A.R. Bishop, K. Rasmussen, A. Usheva, PLoS Comput. Biol. 5, e1000313 (2009)

    Article  ADS  Google Scholar 

  4. Y. Lubelsky, J. Prinz, L. DeNapoli, Y. Li, J. Belsky, D. Macalpine, Genome Res. 24, 1102 (2014)

    Article  Google Scholar 

  5. B. Alberts, A. Johnson, J. Lewis et al., Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002). (DNA Replication Mechanisms)

    Google Scholar 

  6. M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989)

    Article  ADS  Google Scholar 

  7. T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47, 684 (1993)

    Article  ADS  Google Scholar 

  8. S. Zdravkovi’c, J. Nonlinear Math. Phys. 18, 463 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Zoli, J. Chem. Phys. 135, 115101 (2011)

    Article  ADS  Google Scholar 

  10. M. Peyrard, Nonlinearity 17, R1 (2004)

    Article  ADS  Google Scholar 

  11. S. Ares, N.K. Voulgarakis, K.O. Rasmussen, A.R. Bishop, Phys. Rev. Lett. 94, 035504 (2005)

    Article  ADS  Google Scholar 

  12. M. Peyrard, S. Cuesta-L’opez, D. Angelov, J. Phys. Condens. Matter 21, 034103 (2008)

    Article  Google Scholar 

  13. O. Farzadian, M.D. Niry, Phys. A 450, 95–103 (2016)

    Article  MathSciNet  Google Scholar 

  14. O. Farzadian, M.D. Niry, Phys. A 505, 49–60 (2018)

    Article  MathSciNet  Google Scholar 

  15. M. Hillebrand, G. Kalosakas, A.R. Bishop, C. Skokos, J. Chem. Phys. 155, 095101 (2021)

    Article  ADS  Google Scholar 

  16. M. Hillebrand, G. Kalosakas, C. Skokos, A.R. Bishop,Phys. Rev. E 102, 062114 (2020)

  17. M. Barbi, S. Cocco, M. Peyrard, Phys. Lett. A 253, 358 (1999)

    Article  ADS  Google Scholar 

  18. S. Cocco, R. Monasson, Phys. Rev. Lett. 83, 5178 (1999)

    Article  ADS  Google Scholar 

  19. A. Campa, Phys. Rev. E 63, 021901 (2001)

    Article  ADS  Google Scholar 

  20. M. Barbi, S. Lepri, M. Peyrard, N. Theodorakopoulos, Phys. Rev. E 68, 061909 (2003)

  21. M. Zoli, J. Chem. Phys. 138, 205103 (2013)

    Article  ADS  Google Scholar 

  22. M. Zoli, Soft Matter 10, 4304 (2014)

    Article  ADS  Google Scholar 

  23. M. Manghi, N. Destainville, Phys. Rep. 631, 1 (2016)

  24. J.C. Wang, Proc. Natl. Acad. Sci. 76, 200 (1979)

    Article  ADS  Google Scholar 

  25. M. Zoli, J. Chem. Phys. 148, 214902 (2018)

    Article  ADS  Google Scholar 

  26. M. Zoli, Phys. A 492, 9039 (2018)

    Article  Google Scholar 

  27. I. Omelyan, I. Mryglod, R. Folk, Comput. Phys. Commun 151, 272 (2003)

    Article  ADS  Google Scholar 

  28. H.A. Forbert, S.A. Chin, Phys. Rev. E 63, 016703 (2000)

    Article  ADS  Google Scholar 

  29. G. Kalosakas, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, EPL 68, 127 (2004)

    Article  ADS  Google Scholar 

  30. A.E. Bergues-Pupo, J.M. Bergues, F. Falo, Phys. Rev. E 87, 022703 (2013)

    Article  ADS  Google Scholar 

  31. R. Tapia-Rojo, J.J. Mazo, F. Falo, Phys. Rev. E 82, 031916 (2010)

    Article  ADS  Google Scholar 

  32. M. Hillebrand, G. Kalosakas, A. Schwellnus, C. Skokos, Phys. Rev. E 99, 022213 (2019)

    Article  ADS  Google Scholar 

  33. G. Kalosakas, S. Ares, J. Chem. Phys. 130, 235104 (2009)

    Article  ADS  Google Scholar 

  34. B.S. Alexandrov, V. Gelev, Y. Monisova, L.B. Alexandrov, A.R. Bishop, K.Ø. Rasmussen, A. Usheva, Nucleic Acids Res. 37, 2405 (2009)

    Article  Google Scholar 

  35. R. Wells, J. Larson, R. Grant, B. Shortle, C. Cantor, J. Mol. Biol. 54, 465 (1970)

    Article  Google Scholar 

  36. B.S. Alexandrov, L.T. Wille, K.O. Rasmussen, A.R. Bishop, K.B. Blagoev, Phys. Rev. E 74, 050901 (2006)

    Article  ADS  Google Scholar 

  37. O. Dahlena, T.S. van Erp, J. Chem. Phys. 142, 235101 (2015)

    Article  ADS  Google Scholar 

  38. R.B. Inman, R.L. Baldwin, J. Mol. Biol. 8(4), 452–469 (1964)

    Article  Google Scholar 

  39. B.J. Wood, J.R. Ramkaransingh, T. Fojo, M.M. Walther, S.K. Libutti, Cancer 94, 443–451 (2002)

    Article  Google Scholar 

  40. T. Vanagas, A. Gulbinas, J. Pundzius, G. Barauskas, Medicina (Kaunas) 46, 13–17 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ORAU grant with PN 17098 and the state-targeted program “Center of Excellence for Fundamental and Applied Physics” (BR05236454) by the Ministry of Education and Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis or interpretation.

Corresponding author

Correspondence to Omid Farzadian.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Appendix: Rescaled equation of motion

Appendix: Rescaled equation of motion

The full analytical expression in Eq. (3) is given by

$$\begin{aligned} m \ddot{r}_{n}= & {} 2\alpha _n D_n\left( e^{-\alpha _n \left( r_n-R_0\right) }-1\right) e^{-\alpha _n (r_n-R_0)}\nonumber \\{} & {} -2K\left[ \left( L_{n,n-1}-L_0\right) \frac{r_n-r_{n-1}\cos \varphi }{L_{n,n-1}}\right. \nonumber \\{} & {} \quad \left. +\left( L_{n+1,n}-L_0\right) \frac{r_n-r_{n+1}\cos \varphi }{L_{n+1,n}}\right] \nonumber \\{} & {} +Se^{-\beta \left( r_n+r_{n-1}-2R_0\right) }\left( r_n-r_{n-1}\right) \left[ \beta \left( r_n-r_{n-1}\right) -2\right] \nonumber \\{} & {} +Se^{-\beta \left( r_{n+1}+r_n-2R_0\right) }\left( r_{n+1}-r_n\right) \left[ \beta \left( r_{n+1}-r_n\right) +2\right] .\nonumber \\ \end{aligned}$$
(8)

Introducing the dimensionless stretching of the base pairs as \(\tilde{r}_n=\alpha r_n\), \(\tilde{R}_0=\alpha R_0\) and substituting \(b=\frac{\beta }{\alpha }\) and \(a_n=\frac{\alpha _n}{\alpha }\), we can rewrite the equation of motion as

$$\begin{aligned} m \frac{\textrm{d}^2\tilde{r}_n}{\textrm{d}t^2}= & {} 2\alpha \alpha _n D_n\left( e^{-a_n \left( \tilde{r}_n-\tilde{R}_0\right) }-1\right) e^{-a_n \left( \tilde{r}_n-\tilde{R}_0\right) }\nonumber \\{} & {} -2K\left[ \left( \tilde{L}_{n,n-1}-\tilde{L}_0\right) \frac{\tilde{r}_n-\tilde{r}_{n-1}\cos \varphi }{\tilde{L}_{n,n-1}}\right. \nonumber \\{} & {} \left. +\left( \tilde{L}_{n+1,n}-\tilde{L}_0\right) \frac{\tilde{r}_n-\tilde{r}_{n+1}\cos \varphi }{\tilde{L}_{n+1,n}}\right] \nonumber \\{} & {} +Se^{-b\left( \tilde{r}_n+\tilde{r}_{n-1}-2\tilde{R}_0\right) }\left( \tilde{r}_n-\tilde{r}_{n-1}\right) \nonumber \\{} & {} \times \left[ b\left( \tilde{r}_n-\tilde{r}_{n-1}\right) -2\right] \nonumber \\{} & {} +Se^{-b\left( \tilde{r}_{n+1}+\tilde{r}_n-2\tilde{R}_0\right) }(\tilde{r}_{n+1}-\tilde{r}_n)\nonumber \\{} & {} \times \left[ b\left( \tilde{r}_{n+1}-\tilde{r}_n\right) +2\right] \nonumber \\{} & {} -m\gamma \frac{\textrm{d}\tilde{r}_n}{\textrm{d}t}+\alpha \sqrt{2\gamma m k_\texttt {B} T}\;\xi _n(t). \end{aligned}$$
(9)

Next, we introduce the dimensionless time \(\tau =\sqrt{\frac{D\alpha ^2}{m}}t\) and the substitutions \(\lambda _n=\frac{D_n\alpha _n}{D\alpha }\), so that

$$\begin{aligned} \frac{\textrm{d}^2\tilde{r}_n}{\textrm{d}\tau ^2}= & {} 2\lambda _n\left( e^{-a_n \left( \tilde{r}_n-\tilde{R}_0\right) }-1\right) e^{-a_n \left( \tilde{r}_n-\tilde{R}_0\right) }\nonumber \\{} & {} -2\frac{K}{D\alpha ^2}\left[ \left( \tilde{L}_{n,n-1}-\tilde{L}_0\right) \frac{\tilde{r}_n-\tilde{r}_{n-1}\cos \varphi }{\tilde{L}_{n,n-1}}\right. \nonumber \\{} & {} \left. +\left( \tilde{L}_{n+1,n}-\tilde{L}_0\right) \frac{\tilde{r}_n-\tilde{r}_{n+1}\cos \varphi }{\tilde{L}_{n+1,n}}\right] +\frac{S}{D\alpha ^2}\nonumber \\{} & {} \times e^{-b\left( \tilde{r}_n+\tilde{r}_{n-1}-2\tilde{R}_0\right) }\left( \tilde{r}_n-\tilde{r}_{n-1}\right) \left[ b\left( \tilde{r}_n-\tilde{r}_{n-1}\right) -2\right] \nonumber \\{} & {} +\frac{S}{D\alpha ^2}e^{-b\left( \tilde{r}_{n+1}+\tilde{r}_n-2\tilde{R}_0\right) }\left( \tilde{r}_{n+1}-\tilde{r}_n\right) \nonumber \\{} & {} \times \left[ b\left( \tilde{r}_{n+1}-\tilde{r}_n\right) +2\right] \nonumber \\{} & {} -\gamma \sqrt{\frac{m}{D\alpha ^2}}\frac{dr_n}{d\tau }+\frac{\sqrt{2\gamma m k_BT}}{D\alpha }\xi _n\left( \sqrt{\frac{m}{D\alpha ^2}}\tau \right) . \end{aligned}$$
(10)

Finally, in the former equation we rewrite the noise term as

$$\begin{aligned} \xi \left( \sqrt{\frac{m}{D\alpha ^2}}\tau \right) \rightarrow \root 4 \of {\frac{D\alpha ^2}{m}}\xi (\tau ), \end{aligned}$$
(11)

which is justified due to Dirac delta function and Gaussian noise properties, \( \langle \xi _n(A\tau )\xi _n(A\tau ^{\prime }) \rangle = A^{-1} \delta (\tau -\tau ^{\prime })\) and \(\xi (A\tau )\rightarrow \frac{1}{\sqrt{A}}\xi (\tau )\), respectively.

By considering

$$\begin{aligned}{} & {} F_n\left( \tilde{r}_{n-1},\tilde{r}_n,\tilde{r}_{n+1}\right) = 2\lambda _n\left( e^{-a_n (\tilde{r}_n-\tilde{R}_0)}-1\right) e^{-a_n \left( \tilde{r}_n-\tilde{R}_0\right) }\nonumber \\{} & {} -2\tilde{K}\left[ \left( \tilde{L}_{n,n-1}-\tilde{L}_0\right) \frac{\tilde{r}_n-\tilde{r}_{n-1} \cos \varphi }{\tilde{L}_{n,n-1}}\right. \nonumber \\{} & {} \left. +\left( \tilde{L}_{n+1,n}-\tilde{L}_0\right) \frac{\tilde{r}_n-\tilde{r}_{n+1} \cos \varphi }{\tilde{L}_{n+1,n}}\right] \nonumber \\{} & {} +\tilde{S}e^{-b\left( \tilde{r}_n+\tilde{r}_{n-1}-2\tilde{R}_0\right) }\left( \tilde{r}_n-\tilde{r}_{n-1}\right) \left[ b\left( \tilde{r}_n-\tilde{r}_{n-1}\right) -2\right] \nonumber \\{} & {} +\tilde{S}e^{-b\left( \tilde{r}_{n+1}+\tilde{r}_n-2\tilde{R}_0\right) }\left( \tilde{r}_{n+1}-\tilde{r}_n\right) \left[ b\left( \tilde{r}_{n+1}-\tilde{r}_n\right) +2\right] , \end{aligned}$$
(12)

and substituting Eq. (11) into Eq. (10), we are led to Eq. (5) in the text, namely

$$\begin{aligned} \frac{\textrm{d}^2\tilde{r}_n}{\textrm{d}\tau ^2} = F_n(\tilde{r}_{n-1},\tilde{r}_n,\tilde{r}_{n+1})-\Gamma \frac{d \tilde{r}_n}{d \tau }+\sqrt{2\Gamma \mathcal {E}} \xi _n(\tau ). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzadian, O., Oikonomou, T., Moradkhani, M. et al. Model for melting transition of twisted DNA in a thermal bath. Eur. Phys. J. B 96, 23 (2023). https://doi.org/10.1140/epjb/s10051-023-00492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00492-4

Navigation