Skip to main content
Log in

Spectrum, Lifshitz transitions and orbital current in frustrated fermionic ladders with a uniform flux

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ultracold Fermi gases with synthetic gauge field represent an excellent platform to study the combined effect of lattice frustration and an effective magnetic flux close to one flux quantum per particle. The minimal theoretical model to accomplish this task is a system of spinless noninteracting fermions on a triangular two-chain flux ladder. In this paper we consider this model close to half-filling, with interchain hopping amplitudes alternating along the zigzag bonds of the ladder and being small. In such setting qualitative changes in the ground state properties of the model, most notably the flux-induced topological Lifshitz transitions are shifted towards the values of the flux per a diatomic plaquette (f) close to the flux quantum (\(f\sim 1/2\)). Geometrical frustration of the lattice breaks the \(k \rightarrow \pi - k\) particle-hole spectral symmetry present in non-frustrated ladders, and leads to splitting of the degeneracies at metal–insulator transitions. A remarkable feature of a translationally invariant triangular ladder is the appearance of isolated Dirac node at the Brillouin zone boundary, rendering the ground state at \(f=1/2\) semi-metallic. We calculate the flux dependence of the orbital current and identify Lifshitz critical points by the singularities in this dependence at a constant chemical potential \(\mu \) and constant particle density \(\rho \). The absence of the particle-hole symmetry in the triangular ladder leads to the asymmetry between particle (\(\rho >1\)) and hole (\(\rho <1\)) doping and to qualitatively different results for the phase diagram, Lifshitz points and the flux dependence of the orbital current in the settings \(\rho =\textrm{const}\) and \(\mu =\textrm{const}\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article. All data generated or analysed during this study are included in this published article. A preprint of this article has appeared in https://arxiv.org/abs/2210.16814, cond-mat.str-el.

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

Notes

  1. In fact, the location of the lowest energy states close to the zone boundary \(k=\pi \) is a robust property of the model valid as long as \(|t_1 - t_2| \ll |t_1 + t_2|\) irrespective of the magnitude of the ratios \(t_{1,2}/t_0\). On the other hand, a local minimum of \(E_k\) at \(k=0\) only exists under the condition \(t_1 t_2 < 4t^2 _0\); otherwise \(E_k\) has a local maximum at \(k=0\).

References

  1. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 3rd edn. (Pergamon, Oxford, 1977)

    MATH  Google Scholar 

  2. R.E. Peierls, Z. Phys. 80, 763 (1933)

    Article  ADS  Google Scholar 

  3. L. Onsager, Philos. Mag. 43, 1006 (1952)

    Article  Google Scholar 

  4. Q.H. Wannier, Rev. Mod. Phys. 34, 645 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  5. P.G. Harper, Proc. Phys. Soc. Lond. 68, 874 (1955)

    Article  ADS  Google Scholar 

  6. M. Ya Azbel’, Zh. Eksp. Teor. Fiz. 46, 929 (1964). [Sov. Phys. JETP 19, 634 (1964)]

  7. E. Brown, Phys. Rev. 133, A1038 (1964)

    Article  ADS  Google Scholar 

  8. R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  9. Y. Hasegawa, P. Lederer, T.M. Rice, P.B. Wiegmann, Phys. Rev. Lett. 63, 907 (1989)

    Article  ADS  Google Scholar 

  10. W. Barford, J.H. Kim, Phys. Rev. B 43, 559 (1991)

    Article  ADS  Google Scholar 

  11. J. Dalibard, F. Gerbier, G. Jizeliūnas, P. Ölberg, Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  12. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I.B. Spielman, G. Juzelunas, M. Lewenstein, Phys. Rev. Lett. 112, 043001 (2014)

    Article  ADS  Google Scholar 

  13. V. Galitski, G. Juzeliunas, I. Spielman, Phys. Today 72, 39 (2019)

    Article  Google Scholar 

  14. E. Orignac, T. Giamarchi, Phys. Rev. B 64, 144515 (2001)

    Article  ADS  Google Scholar 

  15. H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  16. M. Atala, M. Aidelsburger, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Nat. Phys. 10, 588 (2014)

    Article  Google Scholar 

  17. L.F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, L. Fallani, Phys. Rev. Lett. 117, 220401 (2016)

    Article  ADS  Google Scholar 

  18. B.N. Narozhny, S.T. Carr, A.A. Nersesyan, Phys. Rev. B 71, 161101(R) (2005)

    Article  ADS  Google Scholar 

  19. S.T. Carr, B.N. Narozhny, A.A. Nersesyan, Phys. Rev. B 73, 195114 (2006)

    Article  ADS  Google Scholar 

  20. J.C. Budich, A. Elben, M. Lacki, A. Sterdyniak, M.A. Baranov, P. Zoller, Phys. Rev. A 95, 043632 (2017)

    Article  ADS  Google Scholar 

  21. S. Barbarino, L. Taddia, D. Rossino, L. Mazza, R. Fazio, New J. Phys. 18, 035010 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Barbarino, M. Dalmonte, R. Fazio, G. Santoro, Phys. Rev. A 97, 013634 (2018)

    Article  ADS  Google Scholar 

  23. M.C. Strinati, E. Cornfeld, D. Rossini, S. Barbarino, M. Dalmonte, R. Fazio, E. Sela, L. Mazza, Phys. Rev. X 7, 021033 (2017)

    Google Scholar 

  24. C.-H. Huang, M. Tezuka, M.A. Cazalilla, New J. Phys. 24, 033043 (2022)

    Article  ADS  Google Scholar 

  25. A. Mazurenko, C.S. Chiu, G. Ji, M.F. Parsons, M. Kanász-Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, M. Greiner, Nature 545, 462 (2017)

    Article  ADS  Google Scholar 

  26. S. Krinner, T. Esslinger, J.-P. Brantut, J. Phys. 29, 343003 (2017)

    Google Scholar 

  27. L. Lepori, A. Maraga, A. Celi, L. Dell’Anna, A. Trombettoni, Condens. Matter 3, 14 (2018)

    Article  Google Scholar 

  28. B.Beradze, T. Chanda, E. Tirrito, M. Tsitsishvili, M. Dalmonte, A. Nersesyan (in preparation)

  29. M. Creutz, Phys. Rev. Lett. 83, 2636 (1999)

    Article  ADS  Google Scholar 

  30. A.Y. Kitaev, Phys.-Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  31. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  32. A.W.W. Ludwig, Phys. Scr. T168, 014001 (2016)

    Article  ADS  Google Scholar 

  33. G.E. Volovik, Low Temp. Phys. 43, 47 (2017). arXiv:1701.06435, cond-mat

    Article  ADS  Google Scholar 

  34. G.I. Japaridze, A.A. Nersesyan, Pisma Zh. Eksp. Teor. Fiz. 27, 356 (1978). [Sov. Phys. JETP Lett. 27, 334 (1978)]

  35. V.L. Pokrovsky, A.L. Talapov, Phys. Rev. Lett. 42, 65 (1979)

    Article  ADS  Google Scholar 

  36. B.S. Shastri, B. Sutherland, Phys. Rev. Lett. 65, 243 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Giamarchi, B.S. Shastri, Phys. Rev. B 51, 10915 (1995)

    Article  ADS  Google Scholar 

  38. A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  39. T. Vekua, Phys. Rev. B 80, 104411 (2009)

    Article  ADS  Google Scholar 

  40. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)

    Article  ADS  Google Scholar 

  41. J.H. Kang, J.H. Hun, Y. Shin, New J. Phys. 22, 013023 (2020)

    Article  ADS  Google Scholar 

  42. C.-M. Halati, T. Giamarchi, arXiv:2210.14594, cond-mat. (2022)

Download references

Acknowledgements

We thank Marcello Dalmonte for reading the manuscript and making a number of important suggestions. We thank him, Titas Chanda, Pierre Fromholz, Emanuele Tirrito and Mikheil Tsitsishvili for fruitful discussions and cooperation in related projects. We are also grateful to George Japaridze and Oleg Starykh for interesting conversations on the effects of frustration in one-dimensional quantum systems. The authors acknowledge the support from the Shota Rustaveli National Science Foundation of Georgia, SRNSF, Grant No. FR-19-11872.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper. All the authors have read and approved the final manuscript. Both authors contributed equally to the analytical calculations contained in the present manuscript.

Corresponding author

Correspondence to Alexander Nersesyan.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beradze, B., Nersesyan, A. Spectrum, Lifshitz transitions and orbital current in frustrated fermionic ladders with a uniform flux. Eur. Phys. J. B 96, 2 (2023). https://doi.org/10.1140/epjb/s10051-022-00472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00472-0

Navigation