Skip to main content
Log in

Effects of ferromagnetism in ab initio calculations of basic structural parameters of Fe-A (A = Mo, Nb, Ta, V, or W) random binary alloys

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations are performed to study the effects of ferromagnetism on basic structural parameters including lattice parameters and elastic constants in 45 body-centered cubic (BCC) Fe-based random binary alloys. Each binary consists of Fe and one of the five pure BCC metals, including Mo, Nb, Ta, V, and W. To provide references, six pure metals are also studied. It is found that (i) the effects of ferromagnetism are more pronounced for elastic constants than for lattice parameter, (ii) the effects of ferromagnetism increase with the Fe concentration in the binary, (iii) when ferromagnetism is neglected in DFT calculations, pure Fe is elastically unstable, while most Fe-based alloys are stable, and (iv) relatively good estimates of the structural parameters of alloys can be provided via the simple rule of mixtures only when the ferromagnetism is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results can be replicated using the numerical procedures described in the paper.]

References

  1. Y. Chen, Q. Zhao, H. Wu, Q. Fang, J. Li, Phys. B Condens. Matter 615, 413078 (2021)

    Article  Google Scholar 

  2. S. Xu, Y. Su, I.J. Beyerlein, Mech. Mater. 139, 103200 (2019)

    Article  Google Scholar 

  3. M. Aldén, H.L. Skriver, S. Mirbt, B. Johansson, Phys. Rev. Lett. 69, 2296 (1992)

    Article  ADS  Google Scholar 

  4. M. Aldén, S. Mirbt, H.L. Skriver, N.M. Rosengaard, B. Johansson, Phys. Rev. B 46, 6303 (1992)

    Article  ADS  Google Scholar 

  5. E.G. Moroni, G. Kresse, J. Hafner, J. Furthmüller, Phys. Rev. B 56, 15629 (1997)

    Article  ADS  Google Scholar 

  6. G.Y. Guo, H.H. Wang, Chin. J. Phys. 38, 949 (2000)

    Google Scholar 

  7. G. Steinle-Neumann, Phys. Rev. B 77, 104109 (2008)

    Article  ADS  Google Scholar 

  8. C. Albrecht, A. Kumar, S. Xu, A. Hunter, I.J. Beyerlein, Phys. Rev. Mater. 5, 043602 (2021)

    Article  Google Scholar 

  9. S. Xu, Y. Su, L.T.W. Smith, I.J. Beyerlein, J. Mech. Phys. Solids 141, 104017 (2020)

    Article  MathSciNet  Google Scholar 

  10. J. Kudrnovský, I. Turek, A. Pasturel, R. Tetot, V. Drchal, P. Weinberger, Phys. Rev. B 50, 9603 (1994)

    Article  ADS  Google Scholar 

  11. P. Söderlind, J.A. Moriarty, J.M. Wills, Phys. Rev. B 53, 14063 (1996)

    Article  ADS  Google Scholar 

  12. G. Steinle-Neumann, L. Stixrude, R.E. Cohen, Phys. Rev. B 60, 791 (1999)

    Article  ADS  Google Scholar 

  13. J.A. Yan, C.Y. Wang, S.Y. Wang, Phys. Rev. B 70, 174105 (2004)

    Article  ADS  Google Scholar 

  14. Y. Zaoui, H. Bendaoud, K.O. Obodo, L. Beldi, B. Bouhafs, J. Magn. Magn. Mater. 499, 166312 (2020)

    Article  Google Scholar 

  15. Y. Su, S. Xu, I.J. Beyerlein, J. Appl. Phys. 126, 105112 (2019)

    Article  ADS  Google Scholar 

  16. P. Söderlind, A. Landa, B. Sadigh, L. Vitos, A. Ruban, Phys. Rev. B 70, 144103 (2004)

    Article  ADS  Google Scholar 

  17. J.J. Ríos-Ramírez, J.F. Rivas-Silva, A. Flores-Riveros, Comput. Mater. Sci. 126, 12 (2017)

    Article  Google Scholar 

  18. K. Parlinski, J. łLażewski, P.T. Jochym, A. Chumakov, R. Rüffer, G. Kresse, EPL 56, 275 (2001)

    Article  ADS  Google Scholar 

  19. S.A. Khandy, D.C. Gupta, Int. J. Quantum Chem. 117, e25351 (2017)

    Article  Google Scholar 

  20. M.K. Butt, M. Yaseen, I.A. Bhatti, J. Iqbal, Misbah, A. Murtaza, M. Iqbal, M.M. AL-Anazy, M.H. Alhossainy, A. Laref, J. Mater. Res. Tech. 9, 16488 (2020)

  21. H. Rached, D. Rached, R. Khenata, A.H. Reshak, M. Rabah, Phys. Stat. Sol. (b) 246, 1580 (2009)

    Article  ADS  Google Scholar 

  22. S. Huang, W. Li, S. Lu, F. Tian, J. Shen, E. Holmström, L. Vitos, Scr. Mater. 108, 44 (2015)

    Article  Google Scholar 

  23. C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, M. Ghazisaeidi, Nat. Comm. 9, 1363 (2018)

    Article  ADS  Google Scholar 

  24. E.G. Özdemir, Z. Merdan, Mater. Res. Express 6, 086102 (2019)

    Article  ADS  Google Scholar 

  25. Y. Su, S. Xu, I.J. Beyerlein, Model. Simul. Mater. Sci. Eng. 27, 084001 (2019)

    Article  ADS  Google Scholar 

  26. M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 54, 4519 (1996)

    Article  ADS  Google Scholar 

  27. J.A. Rayne, B.S. Chandrasekhar, Phys. Rev. 122, 1714 (1961)

    Article  ADS  Google Scholar 

  28. H.M. Ledbetter, R.P. Reed, J. Phys. Chem. Ref. Data 2, 531 (1973)

    Article  ADS  Google Scholar 

  29. H.M. Ledbetter, R.L. Moment, Acta Metall. 24, 891 (1976)

    Article  Google Scholar 

  30. J.J. Adams, D.S. Agosta, R.G. Leisure, H. Ledbetter, J. Appl. Phys. 100, 113530 (2006)

    Article  ADS  Google Scholar 

  31. L. Vočadlo, GAd. Wijs, G. Kresse, M. Gillan, G.D. Price, Faraday Discuss. 106, 205 (1997)

    Article  ADS  Google Scholar 

  32. K.J. Caspersen, A. Lew, M. Ortiz, E.A. Carter, Phys. Rev. Lett. 93, 115501 (2004)

    Article  ADS  Google Scholar 

  33. X. Sha, R.E. Cohen, Phys. Rev. B 74, 214111 (2006)

    Article  ADS  Google Scholar 

  34. O. Kubaschwewski, Iron-Binary Phase Diagrams (Springer, Berlin, 1982)

    Google Scholar 

  35. H. Zhang, M.P.J. Punkkinen, B. Johansson, S. Hertzman, L. Vitos, Phys. Rev. B 81, 184105 (2010)

    Article  ADS  Google Scholar 

  36. A. Sutton, W. Hume-Rothery, Mag. J. Sci. Lond. Edinb. Dublin Philos. 46, 1295 (1955)

    Article  Google Scholar 

  37. Y. Yin, J. Zhang, Q. Tan, W. Zhuang, N. Mo, M. Bermingham, M.X. Zhang, Mater. Des. 162, 24 (2019)

    Article  Google Scholar 

  38. A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)

    Article  ADS  Google Scholar 

  39. A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.Q. Chen, Z.K. Liu, Calphad 42, 13 (2013)

    Article  Google Scholar 

  40. H. Warlimont, W. Martienssen, eds., Springer Handbook of Materials Data, Springer Handbooks, 2nd edn. (Springer International Publishing, 2018), ISBN 978-3-319-69741-3. https://www.springer.com/us/book/9783319697413

  41. S. Xu, S.Z. Chavoshi, Y. Su, Comput. Mater. Sci. 202, 110942 (2022)

    Article  Google Scholar 

  42. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  ADS  Google Scholar 

  43. J. von Pezold, A. Dick, M. Friák, J. Neugebauer, Phys. Rev. B 81, 094203 (2010)

    Article  ADS  Google Scholar 

  44. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  45. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  46. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  47. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  48. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  50. Y. Su, M. Ardeljan, M. Knezevic, M. Jain, S. Pathak, I.J. Beyerlein, Comput. Mater. Sci. 174, 109501 (2020)

    Article  Google Scholar 

  51. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  52. S. Xu, E. Hwang, W.R. Jian, Y. Su, I.J. Beyerlein, Intermetallics 124, 106844 (2020)

    Article  Google Scholar 

  53. V.A. Bokov, N.A. Grigoryan, M.F. Bryzhina, V.V. Tikhonov, Phys. Stat. Solidi 28, 835 (1968)

    Article  ADS  Google Scholar 

  54. I. Solovyev, N. Hamada, K. Terakura, Phys. Rev. Lett. 76, 4825 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sai Mu for helpful discussions. The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SX and YS designed the project. SX conducted all calculations. SX and ASK processed data. LX helped interpret results. SX wrote the paper with input from all other authors.

Corresponding author

Correspondence to Yanqing Su.

A Non-magnetic DFT calculations in Cr-based random binary alloys

A Non-magnetic DFT calculations in Cr-based random binary alloys

Lattice parameters and elastic constants of 45 Cr-based random binary alloys are calculated using non-magnetic DFT calculations. Simulation details are the same as in Sect. 2. Results are summarized in Fig. 6.

Fig. 6
figure 6

Lattice parameters \(a_0\) and elastic constants \(C^{\dagger }_{ij}\) in six pure metals (when \(x = 0\) or 1) and 45 Cr-based random binary alloys (when \(0< x < 1\)) based on non-magnetic DFT calculations

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Kulathuvayal, A.S., Xiong, L. et al. Effects of ferromagnetism in ab initio calculations of basic structural parameters of Fe-A (A = Mo, Nb, Ta, V, or W) random binary alloys. Eur. Phys. J. B 95, 167 (2022). https://doi.org/10.1140/epjb/s10051-022-00431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00431-9

Navigation