Skip to main content

Advertisement

Log in

Statistics of Floquet quasienergy spectrum for one-dimensional periodic, Fibonacci quasiperiodic and random discrete-time quantum walks

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Discrete-time quantum walks are Floquet systems if the quantum walk operator is independent of time. We consider such one-dimensional quantum walks with two quantum coin operators arranged in discrete space according to periodic, Fibonacci quasiperiodic and random sequences. We explore the correlation dimension of Floquet quasienergy spectrum, Floquet level spacing ratio and inverse participation ratio of Floquet states, respectively. We find they increase with spreading exponent and surviving exponent, so the statistics of Floquet quasienergy is an effective quantity to reflect dynamical properties in quantum transport of discrete-time quantum walks. We also contrast the differences among the three kinds of quantum walks.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No external data, like from experiments, was collected in this study. All results are obtained directly from simulations and can be seen as they are in the figures.]

References

  1. N. Masuda, M.A. Porter, R. Lambiotte, Random walks and diffusion on networks. Phys. Rep. 716, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Y. Aharonov, L. Davidovich, N. Zagury, Quantum random walks. Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  3. J. Kempe, Quantum random walks–an introductory overview. Contemp. Phys. 44, 307 (2003)

    Article  ADS  Google Scholar 

  4. S.E. Venegas-Andraca, Quantum walks: a comprehensive review. Quant. Inf. Process. 11, 1015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Reitzner, D. Nagaj, V. Buz̆ek, Quantum walks. Acta Phys. Slovaca 61, 603 (2011)

    Article  ADS  Google Scholar 

  6. O. Mülken, A. Blumen, Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. X. Zhan, L. Xiao, Z. Bian, K. Wang, X. Qiu, B.C. Sanders, W. Yi, P. Xue, Detecting topological invariants in nonunitary discrete-time quantum walks. Phys. Rev. Lett. 119, 130501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Portugal, Quantum walks and search algorithm (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  9. A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 8, 285 (2012)

    Article  Google Scholar 

  10. E. Farhi, S. Gutmann, Quantum computation and decision trees. Phys. Rev. A 58, 915 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Ambainis, J. Kempe, A. Rivosh, Coins make quantum walks faster (SIAM, Philadelphia, 2005)

    MATH  Google Scholar 

  12. N. Lo Gullo, C.V. Ambarish, Th. Busch, L. Dell’Anna, C.M. Chandrashekar, Dynamics and energy spectra of aperiodic discrete-time quantum walks. Phys. Rev. E 96, 012111 (2017)

    Article  ADS  Google Scholar 

  13. I. Vakulchyk, M.V. Fistul, P. Qin, S. Flach, Anderson localization in generalized discrete-time quantum walks. Phys. Rev. B 96, 144204 (2017)

    Article  ADS  Google Scholar 

  14. S. Derevyanko, Anderson localization of a one-dimensional quantum walker. Sci. Rep. 8, 1795 (2018)

    Article  ADS  Google Scholar 

  15. A.R.C. Buarque, W.S. Dias, Aperiodic space-inhomogeneous quantum walks: Localization properties energy spectra, and enhancement of entanglement. Phys. Rev. E 100, 032106 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Linden, J. Sharam, Inhomogeneous quantum walks. Phys. Rev. A 80, 052327 (2009)

    Article  ADS  Google Scholar 

  17. Y. Shikano, H. Katsura, Localization and fractality in inhomogeneous quantum walks with self-duality. Phys. Rev. E 82, 031122 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. P. Ribeiro, P. Milman, R. Mosseri, Aperiodic quantum random walks. Phys. Rev. Lett. 93, 190503 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Geraldi, A. Laneve, L.D. Bonavena, L. Sansoni, J. Ferraz, A. Fratalocchi, F. Sciarrino, Á. Cuevas, P. Mataloni, Experimental investigation of superdiffusion via coherent disordered quantum walks. Phys. Rev. Lett. 123, 140501 (2019)

    Article  ADS  Google Scholar 

  20. B. Danacı, İ Yalçınkaya, Çakmak, G. Karpat, S.P. Kelly, A.L. Subaşı, Disorder-free localization in quantum walks. Phys. Rev. A 103, 022416 (2021)

    Article  ADS  Google Scholar 

  21. G. Martín-Vázquez, J. Rodríguez-Laguna, Optimizing the spatial spread of a quantum walk. Phys. Rev. A 102, 022223 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Malishava, I. Vakulchyk, M. Fistul, S. Flach, Floquet Anderson localization of two interacting discrete time quantum walks. Phys. Rev. B 101, 144201 (2020)

    Article  ADS  Google Scholar 

  23. J.K. Asbóth, A. Mallick, Topological delocalization in the completely disordered two-dimensional quantum walk. Phys. Rev. B 102, 224202 (2020)

    Article  ADS  Google Scholar 

  24. H. Sambe, Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  25. J.H. Shirley, Solution of Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979 (1965)

    Article  ADS  Google Scholar 

  26. T. Groh, S. Brakhane, W. Alt, D. Meschede, J.K. Asbóth, A. Alberti, Robustness of topologically protected edge states in quantum walk experiments with neutral atoms. Phys. Rev. A 94, 013620 (2016)

    Article  ADS  Google Scholar 

  27. A. Bisianov, A. Muniz, U. Peschel, O.A. Egorov, Topological Floquet interface states in optical fiber loops. Phys. Rev. A 102, 053511 (2020)

    Article  ADS  Google Scholar 

  28. L. Xiao, TSh. Deng, K.K. Wang, Zh. Wang, W. Yi, P. Xue, Observation of Non-Bloch Parity–Time symmetry and exceptional points. Phys. Rev. Lett. 126, 230402 (2021)

    Article  ADS  Google Scholar 

  29. D.W. Hone, M. Holthaus, Locally disordered lattices in strong ac electric fields. Phys. Rev. B 48, 15123 (1993)

    Article  ADS  Google Scholar 

  30. M. Holthaus, G.H. Ristow, D.W. Hone, ac-field-controlled anderson localization in disordered semiconductor superlattices. Phys. Rev. Lett. 75, 3914 (1995)

    Article  ADS  Google Scholar 

  31. M. Holthaus, D.W. Hone, Localization effects in ac-driven tight-binding lattices. Philos. Mag. B 74, 105 (1996)

    Article  ADS  Google Scholar 

  32. D.F. Martinez, R.A. Molina, Delocalization induced by low-frequency driving in disordered tight-binding lattices. Phys. Rev. B 73, 073104 (2006)

    Article  ADS  Google Scholar 

  33. H. Hatami, C. Danieli, J.D. Bodyfelt, S. Flach, Quasiperiodic driving of Anderson localized waves in one dimension. Phys. Rev. E 93, 062205 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. D.T. Liu, J.T. Chalker, V. Khemani, S.L. Sondhi, Mott, Floquet, and the response of periodically driven Anderson insulators. Phys. Rev. B 98, 214202 (2018)

    Article  ADS  Google Scholar 

  35. V.A. Gopar, R.A. Molina, Controlling conductance statistics of quantum wires by driving ac fields. Phys. Rev. B 81, 195415 (2010)

    Article  ADS  Google Scholar 

  36. T. Kitagawa, T. Oka, E. Demler, Photo control of transport properties in a disordered wire: average conductance, conductance statistics, and time-reversal symmetry. Ann. Phys. 327, 1868 (2012)

    Article  ADS  MATH  Google Scholar 

  37. E. Benito-Matias, R.A. Molina, Localization length versus level repulsion in one-dimensional driven disordered quantum wires. Phys. Rev. B 96, 174202 (2017)

    Article  ADS  Google Scholar 

  38. C. Ma, Y.-S. Wang, J.-H. An, Floquet engineering of localized propagation of light in a waveguide array. Phys. Rev. B 97, 023808 (2018)

    Article  ADS  Google Scholar 

  39. V.M. Vyas, D. Roy, Topological aspects of periodically driven non-Hermitian Su–Schrieffer–Heeger model. Phys. Rev. B 103, 075441 (2021)

    Article  ADS  Google Scholar 

  40. N.Y. Yao, A.C. Potter, I.-D. Potirniche, A. Vishwanath, Discrete time crystals: rigidity, criticality, and realizations. Phys. Rev. Lett. 118, 030401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Random-matrix physics: spectrum and strength fluctuations. Rev. Mod. Phys. 53, 385 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  42. V. Oganesyan, D.A. Huse, Localization of interacting fermions at higher temperature. Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  43. S. Notarnicola, F. Iemini, D. Rossini, R. Fazio, A. Silva, A. Russomanno, From localization to anomalous diffusion in the dynamics of coupled kicked rotors. Phys. Rev. E 97, 022202 (2018)

    Article  ADS  Google Scholar 

  44. M. Sarkar, R. Ghosh, A. Sen, K. Sengupta, Mobility edge and multifractality in a periodically driven Aubry–André model. Phys. Rev. B 103, 184309 (2021)

    Article  ADS  Google Scholar 

  45. J. Wang, J.B. Gong, Butterfly floquet spectrum in Driven SU(2) systems. Phys. Rev. Lett. 102, 244102 (2009)

    Article  ADS  Google Scholar 

  46. R.J. Sharma, T.G. Sarkar, J.N. Bandyopadhyay, Floquet analysis of a fractal-spectrum-generating periodically driven quantum system. Phys. Rev. E 98, 042217 (2018)

    Article  ADS  Google Scholar 

  47. E.M. Barber, Aperiodic structures in condensed matter: fundamentals and applications (CRC Press, Boca Raton, 2009)

    MATH  Google Scholar 

  48. J. Fillman, D.C. Ong, Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks. J. Funct. Anal. 272, 5107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, One-dimensional quantum walks. In: Proceedings of the 33th STOC, (ACM New York, 2001), pp. 37–49

  50. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  51. I. Guarneri, Spectral properties of quantum diffusion on discrete lattices. Europhys. Lett. 10, 95 (1989)

    Article  ADS  Google Scholar 

  52. F. Piéchon, Anomalous diffusion properties of wave packets on quasiperiodic chains. Phys. Rev. Lett. 76, 4372 (1996)

    Article  ADS  Google Scholar 

  53. R. Ketzmerick, K. Kruse, S. Kraut, T. Geisel, What determines the spreading of a wave packet? Phys. Rev. Lett. 79, 1959 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. M. Wilkinson, E.J. Austin, Spectral dimension and dynamics for Harper’s equation. Phys. Rev. B 50, 1420 (1994)

    Article  ADS  Google Scholar 

  55. R.C. Hilborn, Chaos and nonlinear dynamics (Oxford University Press, New York, 1994)

    MATH  Google Scholar 

  56. Y.Y. Atas, E. Bogomolny, O. Giraud, G. Roux, Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett. 110, 084101 (2013)

    Article  ADS  Google Scholar 

  57. E.J. Torres-Herrera, J.A. Méndez-Bermúdez, L.F. Santos, Level repulsion and dynamics in the finite one-dimensional Anderson model. Phys. Rev. E 100, 022142 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  58. L.Y. Gong, K.X. Ma, Comparison of higher-order level spacing ratios signatures localization-delocalization transitions in one-dimensional single-electron lattice systems. Phys. Lett. A 384, 126298 (2020)

    Article  MathSciNet  Google Scholar 

  59. V.K.B. Kota, Embedded random matrix ensembles in quantum physics (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  60. M.V. Berry, M. Tabor, Level clustering in the regular spectrum. Proc. R. Soc. Lond. Ser. A 356, 375 (1977)

    Article  ADS  MATH  Google Scholar 

  61. A. Pandey, R. Ramaswamy, Level spacings for harmonic-oscillator systems. Phys. Rev. A 43, 4237 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  62. J.T. Edwards, D.J. Thouless, Numerical studies of localization in disordered systems. J. Phys. C 5, 807 (1972)

    Article  ADS  Google Scholar 

  63. L.Y. Gong, H. Lu, W.W. Cheng, Exact Mobility edges in 1D mosaic lattices inlaid with slowly varying potentials. Adv. Theory Simul. 4, 2100135 (2021)

    Article  Google Scholar 

  64. Y. Wang, X. Xia, L. Zhang, H. Yao, Sh. Chen, J. You, Q. Zhou, X.-J. Liu, One-dimensional quasiperiodic mosaic lattice with exact mobility edges. Phys. Rev. Lett. 125, 196604 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.61871234).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the design and development of the present research, as well as in the manuscript preparation.

Corresponding author

Correspondence to Longyan Gong.

Appendices

Appendix A: Correlation dimension in different system sizes

Fig. 5
figure 5

Correlation dimension \(D_c\) as functions of \(\theta _2\) for a periodic and b Fibonacci DTQWs

At different system sizes N, the dependence of correlation dimension \(D_c\) on \(\theta _2\) are given in Fig. 5. Here, we present \(D_c\) for periodic and Fibonacci DTQWs. For random DTQWs, the corresponding Floquet quasienergy spectrum is point spectrum [21] and the “pointwise” method to calculate \(D_c\) [55] can not properly determine its correlation dimension. Fig. 5 shows \(D_c\) decreases with N. The difference of \(D_c\) for different N is reduced as N increases, so we expect the values of \(D_c\) will eventually reach asymptotic ones at larger N.

Appendix B: Floquet level spacing ratio in different system sizes

Fig. 6
figure 6

Floquet level spacing ratio \(\langle {r}\rangle \) as functions of \(\theta _2\) for a periodic, b Fibonacci and c random DTQWs, respectively

At different system sizes N, the dependence of Floquet level spacing ratio \(\langle {r}\rangle \) on \(\theta _2\) are given in Fig. 6. For periodic DTQWs, Fig. 6a shows except at \(\theta _2=\pi /2\) and \(3\pi /2\) (states are localized), \(\langle {r}\rangle \) slightly increases with N and it approaches to ones for larger N, which reflects these states are extended [58]. For Fibonacci DTQWs, Fig. 6b shows \(\langle {r}\rangle \) may slightly decreases (\(0\le \theta _2<\pi /4\) and \(3\pi /4<\theta _2\le 2\pi \)) or slightly increases (\(\pi /4<\theta _2<3\pi /4\)) with N. As the spectrum is singular continuous ones, \(\langle {r}\rangle \) is sensitive to system size N. In contrast, for random DTQWs, Fig. 6c shows except at \(\theta _2=\pi /4\) and \(3\pi /4\) (states are extended), \(\langle {r}\rangle \) slightly decreases with N or almost does not change. And most values of \(\langle {r}\rangle \) is nearly equal to or less than 0.386, which means these states are localized [58].

Appendix C: Approximate fractal dimension in different system sizes

Fig. 7
figure 7

Approximate fractal dimension \(\varGamma \) as functions of \(\theta _2\) for a periodic, b Fibonacci and c random DTQWs, respectively

At different system sizes N, the dependence of approximate fractal dimension \(\varGamma \) on \(\theta _2\) are given in Fig. 7. It is known that \(\varGamma \rightarrow 1\) for extended states and \(\varGamma \rightarrow 0\) for localized states [64]. For periodic DTQWs, Fig. 7a shows \(\varGamma \) is relative large and it increases with N, which means these states are extended; at \(\theta _2=\pi /2\) and \(3\pi /2\), \(\varGamma \) is relative small though it slightly increases with N, and such states correspond to localized states. For Fibonacci DTQWs, Fig. 7b shows as \(\theta _2\) is apart from \(\pi /4\) and \(3\pi /4\), \(\varGamma \) is intermediate and the difference of \(\varGamma \) for different N almost disappears as N increases, which means these states are critical. The results for random DTQW are shown in Fig. 7c, where 500, 300 and 100 disorder realizations are applied for system sizes \(N=500, 1000\) and 2000, respectively. It shows except at \(\theta _2=\pi /4\) and \(3\pi /4\) (states are extended), \(\varGamma \) is relatively small and it decreases with N, which means these states are localized.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Sun, J., Guo, X. et al. Statistics of Floquet quasienergy spectrum for one-dimensional periodic, Fibonacci quasiperiodic and random discrete-time quantum walks. Eur. Phys. J. B 95, 78 (2022). https://doi.org/10.1140/epjb/s10051-022-00339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00339-4

Navigation