Skip to main content
Log in

Theory for cuprate high-temperature superconductors in the underdoped regime: the singlet-bond superconductivity

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the large U Hubbard model, the singlet-bond state (the two-electron bound state) different from the resonating valence bond (RVB) state is found to exist. Upon doping holes into the half-filled Hubbard model, the singlet-bond state changes from the immobile state to the translationally mobile state and the coherent singlet-bond superconducting state develops below the disordered immobile singlet-bond insulating phase. The superconducting phase has the doubled-size sublattice symmetry similar to the antiferromagnetic phase. The sublattice quasiparticle energy dispersions of the singlet-bond superconducting state can explain the experimentally observed unusual small hole-like Fermi pockets around \((\pm \frac{\pi }{2},\pm \frac{\pi }{2})\) and are consistent with the ARPES spectra observed in the zone-face and the zone-diagonal directions. The superconducting transition temperature is determined as \(k_{B}T_{c}(\delta )=\frac{3}{\ln \gamma (\delta )}J\delta \), where \(\delta \) is doping, \(J\equiv \frac{4t^{2}}{U}\), and \(\frac{3}{\ln \gamma (\delta )}\) varies monotonically from 3.77 for \(\delta =0\) to 2.42 for \(\delta =0.2\).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a self-contained analytical theory paper and all the necessary data that were used are included in the manuscript.]

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  2. J. Orenstein, A.J. Mills, Science 288, 468 (2000)

    Article  ADS  Google Scholar 

  3. T. Schneider, J.M. Singer, Phase Transition Approach to High Temperature Superconductivity (Imperial College Press, London, 2000)

    Book  Google Scholar 

  4. P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates (Princeton University Press, Princeton, 1997)

    Google Scholar 

  5. H. Takagi et al., Phys. Rev. B 40, 2254 (1989)

    Article  ADS  Google Scholar 

  6. J.B. Torrance et al., Phys. Rev. B 40, 8872 (1989)

    Article  ADS  Google Scholar 

  7. T. Nakano et al., Phys. Rev. B 48, 9689 (1993)

    Article  ADS  Google Scholar 

  8. Y. Fukuzumi et al., Phys. Rev. Lett. 76, 684 (1996)

    Article  ADS  Google Scholar 

  9. Z.X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993)

    Article  ADS  Google Scholar 

  10. R.J. Kelley et al., Phys. Rev. B 50, 590 (1994)

    Article  ADS  Google Scholar 

  11. H. Ding et al., Phys. Rev. Lett. 74, 2784 (1995)

    Article  ADS  Google Scholar 

  12. H. Ding et al., Phys. Rev. Lett. 75, 1425 (1995)

    Article  ADS  Google Scholar 

  13. D.A. Wollman et al., Phys. Rev. Lett. 71, 2134 (1993)

    Article  ADS  Google Scholar 

  14. C.C. Tsuei et al., Phys. Rev. Lett. 73, 593 (1994)

    Article  ADS  Google Scholar 

  15. K. Yamada et al., Phys. Rev. B 57, 6165 (1998)

    Article  ADS  Google Scholar 

  16. J. Tranquada et al., Nature 375, 561 (1995)

    Article  ADS  Google Scholar 

  17. J. Tranquada et al., Phys. Rev. Lett. 78, 338 (1997)

    Article  ADS  Google Scholar 

  18. H.A. Mook, Nature 395, 580 (1998)

    Article  ADS  Google Scholar 

  19. A.V. Balatsky, P. Bourges, Phys. Rev. Lett. 82, 5337 (1999)

    Article  ADS  Google Scholar 

  20. S.R. Dunsiger et al., Phys. Rev. B 78, 092507 (2008)

    Article  ADS  Google Scholar 

  21. E.A. Yelland et al., Phys. Rev. Lett. 100, 047003 (2008)

    Article  ADS  Google Scholar 

  22. A.F. Bangura et al., Phys. Rev. Lett. 100, 047004 (2008)

    Article  ADS  Google Scholar 

  23. S. Blanc et al., Phys. Rev. B 92, 144516 (2010)

    Article  ADS  Google Scholar 

  24. B. Loret et al., Phys. Rev. B 97, 174521 (2018)

    Article  ADS  Google Scholar 

  25. L. Hozoi, M.S. Laad, P. Fulde, Phys. Rev. B 78, 165107 (2008)

    Article  ADS  Google Scholar 

  26. S. Sykora, K.W. Becker, Phys. Rev. B 80, 014511 (2009)

    Article  ADS  Google Scholar 

  27. R. Eder, Phys. Rev. B 100, 085133 (2019)

    Article  ADS  Google Scholar 

  28. Th. Jacobs, S.O. Katterwe, V.M. Krasnov, Phys. Rev. B 94, 220501(R) (2016)

    Article  ADS  Google Scholar 

  29. A.L. Solovjov et al., Phys. Rev. B 94, 224505 (2016)

    Article  ADS  Google Scholar 

  30. W.J. Padilla et al., Phys. Rev. B 72, 060511(R) (2005)

    Article  ADS  Google Scholar 

  31. Robert Leigh, Philip Philips, Ting-Pong. Choy, Phys. Rev. Lett. 99, 046404 (2007)

    Article  ADS  Google Scholar 

  32. Shiladitya Chakraborty, Philip Philips, Phys. Rev. B 80, 132505 (2009)

    Article  ADS  Google Scholar 

  33. Han-Yong. Choi, Yunkyu Bang, David K. Cambell, Phys. Rev. B 61, 9748 (2000)

    Article  ADS  Google Scholar 

  34. K. Katsumi et al., Phys. Rev. B 102, 054510 (2020)

    Article  ADS  Google Scholar 

  35. Qiang-Hua. Wang, Phys. Rev. Lett. 92, 057003 (2004)

    Article  ADS  Google Scholar 

  36. Su. Gang, Phys. Rev. B 72, 092510 (2005)

    Article  Google Scholar 

  37. P.W. Anderson, Phys. Rev. Lett. 96, 017001 (2006)

    Article  ADS  Google Scholar 

  38. M. Harland, M. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 94, 125133 (2016)

    Article  ADS  Google Scholar 

  39. P.W. Anderson, Science 235, 1196 (1987)

    Article  ADS  Google Scholar 

  40. P.W. Anderson, G. Baskaran, Z. Zou, T. Hsu, Phys. Rev. Lett. 58, 2790 (1987)

    Article  ADS  Google Scholar 

  41. G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun. 63, 973 (1987)

    Article  ADS  Google Scholar 

  42. Z. Zou, P.W. Anderson, Phys. Rev. B (Rapid Commun.) 37, 627 (1988)

    Article  ADS  Google Scholar 

  43. P.A. Lee, Xiao-Gang. Wen, Phys. Rev. Lett. 78, 4111 (1997)

    Article  ADS  Google Scholar 

  44. P.W. Anderson, Science 288, 480 (2000)

    Article  Google Scholar 

  45. P.W. Anderson, Science 268, 1154 (1995)

  46. S. Chakravarty, P.W. Anderson, Phys. Rev. Lett. 72, 3859 (1994)

  47. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    Article  ADS  Google Scholar 

  48. B. Loret et al., Phys. Rev. B 96, 094525 (2017)

  49. Sunao Shimizu et al., Phys. Rev. B 83, 214514 (2011)

  50. W.N. Hardy, D.A. Bonn, D.C. Morgan, Phys. Rev. Lett. 70, 3999 (1993)

    Article  ADS  Google Scholar 

  51. C.C. Homes et al., Phys. Rev. B 72, 134517 (2005)

    Article  ADS  Google Scholar 

  52. E. Gull, O. Parcollet, A.J. Millis, Phys. Rev. Lett. 110, 216405 (2013)

    Article  ADS  Google Scholar 

  53. E. Gull, A.J. Millis, Phys. Rev. B 91, 085116 (2015)

    Article  ADS  Google Scholar 

  54. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  55. Z.-X. Shen, J.R. Schrieffer, Phys. Rev. Lett. 78, 1771 (1997)

    Article  ADS  Google Scholar 

  56. A. Inoi et al., Phys. Rev. B 62, 4137 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kaga.

Appendix: Calculation of \(\Gamma (\delta )\)

Appendix: Calculation of \(\Gamma (\delta )\)

We divide the whole square lattice into the four groups of diamonds (labeled 1, 2, 3, 4), each diamond containing one electron on each of the 4 vertex sites and one on the center site as shown in Fig. 4. The diamonds of the same group are so chosen that the vertices do not overlap between different diamonds. The four groups 1–4 are geometrically equal so the number of diamonds in each group is the same, \(N_{1}=N_{2}=N_{3}=N_{4}\).

First, we calculate \(\Gamma (0)\) for the undoped case \(\delta =0\) that each lattice site is occupied by one electron. Each diamond of any group can have only one singlet-bond and there are four such cases to have a singlet-bond between the center electron and one of the four surrounding vertex electrons. We count the number of possible arrangements of singlet-bond placement in each group, one by one, in such a way that after the counting is finished for group 1, we count the number for group 2, and so on. First, in group 1, each diamond can have four possible singlet-bond placements independent of the other diamonds, so giving in total \(4^{N_{1}}\) for the number of arrangements in group 1. Next, in group 2, each vertex of the diamond is shared with the diamonds of group 1 so the probability for the center site to make a singlet-bond with each of the vertex sites is reduced from 1 to \(1-\frac{1}{4}\). Therefore, each diamond can have \((1-\frac{1}{4})\times 4\) singlet-bond placements and the total arrangements are \([(1-\frac{1}{4})\times 4]^{N_{2}}\). Similarly, the diamond in group 3 shares its vertex with two other diamonds belonging to groups 1 and in 2 so the arrangements are \([(1-\frac{1}{4}-\frac{1}{4})\times 4]^{N_{3}}\). In addition, in group 4, each vertex is shared with the other three groups 1, 2, and 3 and the arrangements are \([(1-\frac{1}{4}-\frac{1}{4}-\frac{1}{4})\times 4]^{N_{4}}\). These four arrangements’ numbers are multiplied to obtain the total number of all possible random singlet-bond arrangements \(\Gamma (\delta =0)\) as they have been obtained independent of the other arrangements. Since the total number of the diamonds included in all the groups, \(N_{1}+N_{2}+N_{3}+N_{4}=4N_{1}\), is equal to the number of singlet bonds, \(N_{sb}(0)=\frac{N}{2}\), \(\Gamma (\delta =0)\) is written as

$$\begin{aligned} \Gamma (\delta =0)= & {} 4^{N_{1}}3^{N_{2}}2^{N_{3}}1^{N_{4}}=(4!)^{\frac{1}{4}\frac{N}{2}}=2.21^{\frac{N}{2}} \nonumber \\\equiv & {} \gamma (\delta =0)^{\frac{N}{2}}, \end{aligned}$$
(A.1)

which defines \(\gamma (\delta =0)\).

Fig. 4
figure 4

The undoped two-dimensional square lattice is divided into the four groups 1–4 of diamonds (bold lines). Each diamond has one electron at the center site and one electron at each of the surrounding four vertex sites and can make only one singlet-bond

In the \(\delta \) doped system, \(\frac{N}{2}\delta \) singlet bonds are destroyed by \(N\delta \) doped holes. These broken bonds must be equally distributed with the same number \(\frac{N}{2}\frac{\delta }{4}=N_{1}\delta \equiv \Delta N_{1}\) into the four diamond groups. Therefore, the remaining singlet-bond number in each group is \(N_{1}-\Delta N_{1}=N_{1}(1-\delta )\). The number of the combination to select diamonds in which singlet bonds are not destroyed is the same in all the groups and is given by \(C_{N_{1},N_{1}(1-\delta )}=\frac{N_{1}!}{(N_{1}\delta )!(N_{1}(1-\delta ))!}=\delta ^{-N_{1}\delta }(1-\delta )^{-N_{1}(1-\delta )}\) which is hereafter written as C. The number of the singlet bonds arrangements for the bond-remaining diamonds in group 1 is \(4^{N_{1}(1-\delta )}\) similar to the \(\delta =0\) case but for groups 2, 3, and 4 one must take into account the fact that if the previous group diamonds sharing vertices with the one under consideration are doped with holes, the possible singlet-bond placement number is increased by 1 if the vertices are shared by 2 groups, increased by 2 if shared by 3 groups, and increased by 3 if shared by 4 groups. Accordingly \(\Gamma (\delta )\) is given by \(\Gamma (\delta )=[C4^{N_{1}(1-\delta )}][C\{(1-\delta )\times 3+\delta \times 4\}^{N_{1}(1-\delta )}][C\{(1-\delta )^{2}\times 2+2(1-\delta )\delta \times 3+\delta ^{2}\times 4\}][C\{(1-\delta )^{3}\times 1+3(1-\delta )^{2}\delta \times 2+3(1-\delta )\delta ^{2}\times 3+\delta ^{3}\times 4\}^{N_{1}(1-\delta )}]\). Therefore, \(\Gamma (\delta )\) and thus \(\ln \gamma (\delta )\) are obtained as

$$\begin{aligned}&\Gamma (\delta )=C^{4}[4!]^{\frac{N}{8}(1-\delta )}\nonumber \\&\quad \times \left[ \left( 1+\frac{\delta }{3}\right) \left( 1+\delta \right) \left( 1+3\delta \right) \right] ^{\frac{N}{8}(1-\delta )}, \end{aligned}$$
(A.2)

and

$$\begin{aligned} \ln \gamma \left( \delta \right)= & {} 0.795+0.205\delta -\delta ^{2}+\frac{1}{4}\left( 1-\delta \right) \ln \left( 1+\frac{13}{3}\delta \right) \nonumber \\&+\delta |\ln \delta |. \end{aligned}$$
(A.3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaga, H. Theory for cuprate high-temperature superconductors in the underdoped regime: the singlet-bond superconductivity. Eur. Phys. J. B 95, 72 (2022). https://doi.org/10.1140/epjb/s10051-022-00322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00322-z

Navigation