Skip to main content
Log in

Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the electromechanical response of Janus transition metal dichalcogenide (TMD) nanotubes from first principles. In particular, considering both armchair and zigzag variants of 18 select Janus TMD nanotubes that are identified as stable, we determine the change in bandgap and charge carriers’ effective mass upon (tensile) axial and torsional deformations using density functional theory (DFT). We observe that metallic nanotubes remain unaffected, whereas the bandgap in semiconducting nanotubes decreases linearly and quadratically with axial and shear strains, respectively, leading to semiconductor–metal transitions. In addition, we find that there is a continuous decrease and increase in the effective mass of holes and electrons with strains, respectively, leading to n-type–p-type semiconductor transitions. We show that this behavior is a consequence of the rehybridization of orbitals, rather than charge transfer between the atoms. Overall, mechanical deformations form a powerful tool for tailoring the electronic response of semiconducting Janus TMD nanotubes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data associated with this work can be found in the Supplementary material.

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  ADS  Google Scholar 

  2. R. Tenne, Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem. Int. Ed. 42(42), 5124–5132 (2003)

    Article  Google Scholar 

  3. C.N.R. Rao, M. Nath, Advances in Chemistry: A Selection of CNR Rao’s Publications (1994–2003) (World Scientific, New Jersey, 2003), pp. 310–333

    Book  Google Scholar 

  4. M. Serra, R. Arenal, R. Tenne, An overview of the recent advances in inorganic nanotubes. Nanoscale 11(17), 8073–8090 (2019)

    Article  Google Scholar 

  5. S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P.S. Schmidt, N.F. Hinsche, M.N. Gjerding, D. Torelli, P.M. Larsen, A.C. Riis-Jensen et al., The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5(4), 042002 (2018)

    Article  Google Scholar 

  6. J Zhou, L Shen, M D Costa, K A Persson, Shyue P Ong, P Huck, Y Lu, X Ma, Y Chen, H Tang, et al. 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Scientific Data, 6(1):1–10, 2019

  7. M.N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, U.P. Holguin, N.R. Knøsgaard, M. Kruse, S. Manti et al., Recent progress of the computational 2D materials database (C2DB). 2D Mater. 8(4), 044002 (2021)

    Article  Google Scholar 

  8. S. Kumar, P. Suryanarayana, Bending moduli for forty-four select atomic monolayers from first principles. Nanotechnology 31(43), 43LT01 (2020)

    Article  Google Scholar 

  9. M. Yagmurcukardes, Y. Qin, S. Ozen, M. Sayyad, F.M. Peeters, S. Tongay, H. Sahin, Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 7(1), 011311 (2020)

    Article  ADS  Google Scholar 

  10. Q.-L. Xiong, J. Zhou, J. Zhang, T. Kitamura, Z.-H. Li, Spontaneous curling of freestanding Janus monolayer transition-metal dichalcogenides. Phys. Chem. Chem. Phys. 20(32), 20988–20995 (2018)

    Article  Google Scholar 

  11. A. Bhardwaj, P. Suryanarayana, Elastic properties of Janus transition metal dichalcogenide nanotubes from first principles. Eur. Phys. J. B 95(13), 1–8 (2022)

    Google Scholar 

  12. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang et al., Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017)

    Article  Google Scholar 

  13. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi et al., Janus monolayer transition-metal dichalcogenides. ACS Nano. 11(8), 8192–8198 (2017)

    Article  Google Scholar 

  14. D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N.H. Patoary, H. Li et al., Room-temperature synthesis of 2D Janus crystals and their heterostructures. Adv. Mater. 32(50), 2006320 (2020)

    Article  Google Scholar 

  15. Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A.A. Puretzky, L. Liang, Y. Kong, X. Gu, A. Strasser et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS Nano. 14(4), 3896–3906 (2020)

    Article  Google Scholar 

  16. Z.-K. Tang, B. Wen, M. Chen, L.-M. Liu, Janus MoSSe nanotubes: tunable band gap and excellent optical properties for surface photocatalysis. Adv. Theory Simul. 1(10), 1800082 (2018)

    Article  Google Scholar 

  17. S. Oshima, M. Toyoda, S. Saito, Geometrical and electronic properties of unstrained and strained transition metal dichalcogenide nanotubes. Phys. Rev. Mater. 4(2), 026004 (2020)

    Article  Google Scholar 

  18. S. Xie, H. Jin, Y. Wei, S. Wei, Theoretical investigation on stability and electronic properties of Janus MoSSe nanotubes for optoelectronic applications. Optik 227, 166105 (2021)

    Article  ADS  Google Scholar 

  19. L. Ju, P. Liu, Y. Yang, L. Shi, G. Yang, L. Sun, Tuning the photocatalytic water-splitting performance with the adjustment of diameter in an armchair WSSe nanotube. J. Energy Chem. 61, 228–235 (2021)

    Article  Google Scholar 

  20. L. Ju, J. Qin, G. Shi, L. Yang, J. Zhang, L. Sun, Rolling the WSSe bilayer into double-walled nanotube for the enhanced photocatalytic water-splitting performance. Nanomaterials 11(3), 705 (2021)

    Article  Google Scholar 

  21. S. Zhang, H. Jin, C. Long, T. Wang, R. Peng, B. Huang, Y. Dai, MoSSe nanotube: a promising photocatalyst with an extremely long carrier lifetime. J. Mater. Chem. A 7(13), 7885–7890 (2019)

    Article  Google Scholar 

  22. D Yudilevich, R Levi, I Nevo, R Tenne, A Ya’akobovitz, and E Joselevich. Self-Sensing Torsional Resonators Based on Inorganic Nanotubes. ICME, pp. 1–4 (2018)

  23. R. Levi, J. Garel, D. Teich, G. Seifert, R. Tenne, E. Joselevich, Nanotube electromechanics beyond carbon: the case of \({\text{ WS }}_{2}\). ACS Nano. 9(12), 12224–12232 (2015)

    Article  Google Scholar 

  24. Y. Divon, R. Levi, J. Garel, D. Golberg, R. Tenne, A. Ya’akobovitz, E. Joselevich, Torsional resonators based on inorganic nanotubes. Nano Lett. 17(1), 28–35 (2017)

    Article  ADS  Google Scholar 

  25. S. Barua, H.S. Dutta, R. Gogoi, S. Devi, R. Khan, Nanostructured \({\text{ MoS }}_{2}\)-based advanced biosensors: a review. ACS Appl. Nano Mater. 1(1), 2–25 (2017)

    Article  Google Scholar 

  26. B.L. Li, J. Wang, H.L. Zou, S. Garaj, C.T. Lim, J. Xie, N.B. Li, D.T. Leong, Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Func. Mater. 26(39), 7034–7056 (2016)

    Article  Google Scholar 

  27. V. Sorkin, H. Pan, H. Shi, S.Y. Quek, Y.W. Zhang, Nanoscale transition metal dichalcogenides: structures, properties, and applications. Crit. Rev. Solid State Mater. Sci. 39(5), 319–367 (2014)

    Article  ADS  Google Scholar 

  28. M. Nath, S. Kar, A.K. Raychaudhuri, C.N.R. Rao, Superconducting \({\text{ NbSe }}_{2}\) nanostructures. Chem. Phys. Lett. 368(5–6), 690–695 (2003)

    Article  ADS  Google Scholar 

  29. T. Tsuneta, T. Toshima, K. Inagaki, T. Shibayama, S. Tanda, S. Uji, M. Ahlskog, P. Hakonen, M. Paalanen, Formation of metallic \({\text{ NbSe }}_{2}\) nanotubes and nanofibers. Curr. Appl. Phys. 3(6), 473–476 (2003)

    Article  Google Scholar 

  30. H.-H. Wu, Q. Meng, H. Huang, C.T. Liu, X.-L. Wang, Tuning the indirect-direct band gap transition in the \({\text{ MoS }}_{2-{\text{ x }}}{\text{ Se }}_{\text{ x }}\) armchair nanotube by diameter modulation. Phys. Chem. Chem. Phys. 20(5), 3608–3613 (2018)

    Article  Google Scholar 

  31. A.E.G. Mikkelsen, F.T. Bölle, K.S. Thygesen, T. Vegge, I.E. Castelli, Band structure of MoSTe Janus nanotubes. Phys. Rev. Mater. 5(1), 014002 (2021)

    Article  Google Scholar 

  32. W. Zhao, Y. Li, W. Duan, F. Ding, Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X-M-Y (X, Y= S, Se, Te; M= Mo, W, Nb, Ta): a computational study. Nanoscale 7(32), 13586–13590 (2015)

    Article  ADS  Google Scholar 

  33. L. Tao, Y.-Y. Zhang, J. Sun, S. Du, H.-J. Gao, Band engineering of double-wall Mo-based hybrid nanotubes. Chin. Phys. B 27(7), 076104 (2018)

    Article  ADS  Google Scholar 

  34. R.A. Evarestov, A.V. Kovalenko, A.V. Bandura, First-principles study on stability, structural and electronic properties of monolayers and nanotubes based on pure \({\text{ Mo(W)S(Se) }}_{2}\) and mixed (Janus)Mo(W)SSe dichalcogenides. Physica E 115, 113681 (2020)

    Article  Google Scholar 

  35. F.T. Bölle, A.E.G. Mikkelsen, K.S. Thygesen, T. Vegge, I.E. Castelli, Structural and chemical mechanisms governing stability of inorganic Janus nanotubes. NPJ Comput. Mater. 7(1), 1–8 (2021)

    Article  ADS  Google Scholar 

  36. Y.Z. Wang, R. Huang, B.L. Gao, G. Hu, F. Liang, Y.L. Ma, Mechanical and strain-tunable electronic properties of Janus MoSSe nanotubes. Chalcogenide Lett. 15(11), 535–543 (2018)

    Google Scholar 

  37. Y.F. Luo, Y. Pang, M. Tang, Q. Song, M. Wang, Electronic properties of Janus MoSSe nanotubes. Comput. Mater. Sci. 156, 315–320 (2019)

    Article  Google Scholar 

  38. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

  39. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  40. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet et al., First-principles computation of material properties: the abinit software project. Comput. Mater. Sci. 25(3), 478–492 (2002)

    Article  Google Scholar 

  41. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41(3), 653–658 (2008)

    Article  Google Scholar 

  42. A. Sharma, P. Suryanarayana, Real-space density functional theory adapted to cyclic and helical symmetry: application to torsional deformation of carbon nanotubes. Phys. Rev. B 103(3), 035101 (2021)

    Article  ADS  Google Scholar 

  43. Q. Xu, A. Sharma, B. Comer, H. Huang, E. Chow, A.J. Medford, J.E. Pask, P. Suryanarayana, SPARC: simulation package for ab-initio real-space calculations. SoftwareX 15, 100709 (2021)

    Article  Google Scholar 

  44. S. Ghosh, P. Suryanarayana, SPARC: accurate and efficient finite-difference formulation and parallel implementation of density functional theory: Isolated clusters. Comput. Phys. Commun. 212, 189–204 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. Ghosh, P. Suryanarayana, SPARC: accurate and efficient finite-difference formulation and parallel implementation of density functional theory: extended systems. Comput. Phys. Commun. 216, 109–125 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. S. Ghosh, A.S. Banerjee, P. Suryanarayana, Symmetry-adapted real-space density functional theory for cylindrical geometries: application to large group-IV nanotubes. Phys. Rev. B 100(12), 125143 (2019)

    Article  ADS  Google Scholar 

  47. A.S. Banerjee, P. Suryanarayana, Cyclic density functional theory: a route to the first principles simulation of bending in nanostructures. J. Mech. Phys. Solids 96, 605–631 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. David Codony, Irene Arias, Phanish Suryanarayana, Transversal flexoelectric coefficient for nanostructures at finite deformations from first principles. Phys. Rev. Mater. 5(3), L030801 (2021)

    Article  ADS  Google Scholar 

  49. S. Kumar, D. Codony, I. Arias, P. Suryanarayana, Flexoelectricity in atomic monolayers from first principles. Nanoscale 13(3), 1600–1607 (2021)

    Article  Google Scholar 

  50. A. Bhardwaj, A. Sharma, P. Suryanarayana, Torsional moduli of transition metal dichalcogenide nanotubes from first principles. Nanotechnology 32(28), 28LT02 (2021)

    Article  Google Scholar 

  51. A. Bhardwaj, A. Sharma, P. Suryanarayana, Torsional strain engineering of transition metal dichalcogenide nanotubes: an ab initio study. Nanotechnology 32(47), 47LT01 (2021)

    Article  Google Scholar 

  52. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  53. D.R. Hamann, Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88(8), 085117 (2013)

    Article  ADS  Google Scholar 

  54. M.F. Shojaei, J.E. Pask, A.J. Medford, P. Suryanarayana. SPMS: Table of transferable and soft ONCV pseudopotentials (in preparation)

  55. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    Article  ADS  Google Scholar 

  56. W. Shi, Z. Wang, Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides. J. Phys. Condens. Matter 30(21), 215301 (2018)

    Article  ADS  Google Scholar 

  57. I. Kaplan-Ashiri, R. Tenne, Mechanical properties of \({\text{ WS }}_{2}\) nanotubes. J. Cluster Sci. 18(3), 549–563 (2007)

    Article  Google Scholar 

  58. I. Kaplan-Ashiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, R. Tenne, On the mechanical behavior of \({\text{ WS }}_{2}\) nanotubes under axial tension and compression. Proc. Natl. Acad. Sci. 103(3), 523–528 (2006)

    Article  ADS  Google Scholar 

  59. K.S. Nagapriya, O. Goldbart, I. Kaplan-Ashiri, G. Seifert, R. Tenne, E. Joselevich, Torsional stick-slip behavior in \({\text{ WS }}_{2}\) nanotubes. Phys. Rev. Lett. 101(19), 195501 (2008)

    Article  ADS  Google Scholar 

  60. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen, Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90(15), 156401 (2003)

    Article  ADS  Google Scholar 

  61. N. Zibouche, M. Ghorbani-Asl, T. Heine, A. Kuc, Electromechanical properties of small transition-metal dichalcogenide nanotubes. Inorganics 2(2), 155–167 (2014)

    Article  Google Scholar 

  62. W. Li, G. Zhang, M. Guo, Y.-W. Zhang, Strain-tunable electronic and transport properties of \({\text{ MoS }}_{2}\) nanotubes. Nano Res. 7(4), 518–527 (2014)

    Article  Google Scholar 

  63. M. Ghorbani-Asl, N. Zibouche, M. Wahiduzzaman, A.F. Oliveira, A. Kuc, T. Heine, Electromechanics in \({\text{ MoS }}_{2}\) and \({\text{ WS }}_{2}\): nanotubes vs. monolayers. Sci. Rep. 3, 2961 (2013)

    Article  ADS  Google Scholar 

  64. Y.Z. Wang, R. Huang, X.Q. Wang, Q.F. Zhang, B.L. Gao, L. Zhou, G. Hua, Strain-tunable electronic properties of \({\text{ CrS }}_{2}\) nanotubes. Chalcogenide Lett. 13(7), 301–307 (2016)

    Google Scholar 

  65. G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4(1), 1–7 (2013)

    Article  Google Scholar 

  66. T. Nilges, S. Lange, M. Bawohl, J.M. Deckwart, M. Janssen, H.-D. Wiemhöfer, R. Decourt, B. Chevalier, J. Vannahme, H. Eckert et al., Reversible switching between p-and n-type conduction in the semiconductor \({\text{ Ag }}_{10}{\text{ Te }}_{4}{\text{ Br }}_{3}\). Nat. Mater. 8(2), 101–108 (2009)

    Article  ADS  Google Scholar 

  67. J. Zhang, P. Gu, G. Long, R. Ganguly, Y. Li, N. Aratani, H. Yamada, Q. Zhang, Switching charge-transfer characteristics from p-type to n-type through molecular doping (co-crystallization). Chem. Sci. 7(6), 3851–3856 (2016)

    Article  Google Scholar 

  68. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya, H. Hosono, Heavy hole doping of epitaxial thin films of a wide gap p-type semiconductor, LaCuOSe, and analysis of the effective mass. Appl. Phys. Lett. 91(1), 012104 (2007)

    Article  ADS  Google Scholar 

  69. L. Chen, J. Yang, S. Klaus, L.J. Lee, R. Woods-Robinson, J. Ma, Y. Lum, J.K. Cooper, F.M. Toma, L.-W. Wang et al., p-Type transparent conducting oxide/n-type semiconductor heterojunctions for efficient and stable solar water oxidation. J. Am. Chem. Soc. 137(30), 9595–9603 (2015)

    Article  Google Scholar 

  70. T. Wen, Y. Wang, N. Li, Q. Zhang, Y. Zhao, W. Yang, Y. Zhao, H.-K. Mao, Pressure-driven reversible switching between n-and p-Type conduction in chalcopyrite \({\text{ CuFeS }}_{2}\). J. Am. Chem. Soc. 141(1), 505–510 (2018)

  71. B.D. Naab, S. Himmelberger, Y. Diao, K. Vandewal, P. Wei, B. Lussem, A. Salleo, Z. Bao, High mobility n-type transistors based on solution-sheared doped 6,13-Bis (triisopropylsilylethynyl) pentacene thin films. Adv. Mater. 25(33), 4663–4667 (2013)

    Article  Google Scholar 

  72. R.F.W. Bader, T.T. Nguyen-Dang. In Advances in Quantum Chemistry, vol. 14. (Elsevier, 1981), pp. 63–124

  73. W. Tang, E. Sanville, G. Henkelman, A grid-based bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21(8), 084204 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the US National Science Foundation (CAREER-1553212).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed equally to this work.

Corresponding author

Correspondence to Phanish Suryanarayana.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 6711 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, A., Suryanarayana, P. Strain engineering of Janus transition metal dichalcogenide nanotubes: an ab initio study. Eur. Phys. J. B 95, 59 (2022). https://doi.org/10.1140/epjb/s10051-022-00319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00319-8

Navigation