Skip to main content
Log in

Goos–Hänchen effect of spin electron beams in the non-collinear double δ-barrier magnetic nanostructure

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Since the charge transport has a sensitive property near the boundary, the GH shift and spin polarization are reexamined with a parallel double barrier magnetic nanostructure. It shows there exists a much stronger GH shift and spin polarization when the transmitted wave vector is much closer to zero by modulating the magnetic fields strength and incident energy. Furthermore, the influence on spin polarization is studied by changing the angle between two magnetic fields. It revealed that a stable spin polarization can be obtained by changing angle under some specific applied voltage and incident energies. Our results indicate a need for caution in boundary condition and tuning of angle. These interesting properties may provide good ideas to design and fabricate a spin beam splitters or filters.

Graphical abstract

The influence of the symmetry breaking of magnetic fields on the spin polarization is studied by changing the angle between both magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results are obtained directly from simulations and all data can be read from this published article.]

References

  1. A. Nogaret, S.J. Bending, M. Henini, Phys. Rev. Lett. 84, 2231 (2000)

    Article  ADS  Google Scholar 

  2. A. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. B 77, 073307 (1994)

    Google Scholar 

  3. F. Zhai, H.Q. Xu, Y. Guo, Phys. Rev. B 70, 085308 (2004)

    Article  ADS  Google Scholar 

  4. V.F. Motsnyi, P. Van-Dorpe, W. Van-Roy, Phys. Rev. B 68(24), 245319 (2003)

    Article  ADS  Google Scholar 

  5. H.C. Koo, J.H. Kwon, Science 325(5947), 1515–1518 (2009)

    Article  ADS  Google Scholar 

  6. J. Wunderlich, B.G. Park, A.C. Irvine, Science 330(6012), 1801–1804 (2010)

    Article  ADS  Google Scholar 

  7. P. Chuang, S.C. Ho, L.W. Smith, Nat. Nanotechnol. 10, 35–39 (2015)

    Article  ADS  Google Scholar 

  8. A. Majumdar, Phys. Rev. B 54, 11911 (1996)

    Article  ADS  Google Scholar 

  9. G. Papp, F.M. Peeters, Appl. Phys. Lett. 78, 2184 (2001)

    Article  ADS  Google Scholar 

  10. G. Papp, F.M. Peeters, Appl. Phys. Lett. 79, 3198 (2001)

    Article  ADS  Google Scholar 

  11. H.Z. Xu, Q.Q. Yan, Phys. Lett. A 372, 6216 (2008)

    Article  ADS  Google Scholar 

  12. H.Z. Xu, Z. Shi, Appl. Phys. Lett. 81, 691 (2002)

    Article  ADS  Google Scholar 

  13. H.Z. Xu, Y. Okada, Appl. Phys. Lett. 79, 3119 (2001)

    Article  ADS  Google Scholar 

  14. F. Goos, H. Hänchen, Ann. Phys. 436, 333 (1947)

    Article  Google Scholar 

  15. F. Goos, H. Lindberg-Hänchen, Ann. Phys. 440, 251 (1949)

    Article  Google Scholar 

  16. M. Khodas, A. Shekhter, A.M. Finkel’Stein, Phys. Rev. Lett. 92, 086602 (2004)

    Article  ADS  Google Scholar 

  17. X. Chen, C.F. Li, Y. Ban, Phys. Rev. B 77, 073307 (2008)

    Article  ADS  Google Scholar 

  18. L. Yuan, L.L. Xiang, Y.H. Kong, M.W. Lu, Z.J. Lan, A.H. Zeng, Z.Y. Wang, Eur. Phys. J. B. 85, 8 (2011)

    Article  ADS  Google Scholar 

  19. Y.H. Kong, X. Fu, S.Y. Chen, A.H. Li, X.L. Liang, Phys. Lett. A 377, 2610 (2013)

    Article  ADS  Google Scholar 

  20. C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  21. H. Ghadiri, A. Saffarzadeh, J. Phys. Condens. Matter 29, 115303 (2017)

    Article  ADS  Google Scholar 

  22. Q. Tang, M.W. Lu, X.H. Huang, Y.L. Zhou, J. Supercond. Nov. Magn 31, 1383 (2018)

    Article  Google Scholar 

  23. M.R. Liu, Z.F. Liu, R.L. Zhang, X.B. Xiao, Q.P. Wu, Chin. Phys. B 30(10), 107302 (2021)

    Article  ADS  Google Scholar 

  24. L.H. Shen, W.Y. Ma, G.X. Liu, J. Electron. Matter. 45, 4183 (2016)

    Article  ADS  Google Scholar 

  25. Y. Song, H.C. Wu, Y. Guo, Appl. Phys. Lett. 100, 253116 (2012)

    Article  ADS  Google Scholar 

  26. M. Mekkaoui, A. Jellal, H. Bahlouli, Phys. E. 111, 218 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate financial support of the Doctoral Research foundation via No. XYBY202016 and No. XYBY202008, and Innovation Foundation of Gansu Provincial Department of Education via No. 2021B-276.

Author information

Authors and Affiliations

Authors

Contributions

LSG conceived the presented idea. LSG and ST performed the computations. The authors contributed to the scientific discussions and the final version of the manuscript.

Corresponding author

Correspondence to Lishuai Guo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Li, J., Zhu, X. et al. Goos–Hänchen effect of spin electron beams in the non-collinear double δ-barrier magnetic nanostructure. Eur. Phys. J. B 95, 2 (2022). https://doi.org/10.1140/epjb/s10051-021-00262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00262-0

Navigation