Skip to main content
Log in

Competitive metastable behaviours of surface and bulk in Ising ferromagnet

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The reversal of magnetisation has been studied in a three-dimensional Ising ferromagnet by Monte Carlo simulation with Metropolis single spin flip algorithm using random updating scheme. The outer layers are considered as surface. The surface interacts with core with a relative ferromagnetic interaction strength. Depending on the relative interaction strength, the time of reversal of the surface was found to be different from that of the bulk. For weaker relative strength, surface reversal was found to be faster than that of bulk and vice versa for stronger relative interaction strength. A critical value (\(R_c\)) of relative interaction strength provides same time of reversal of surface and bulk. This critical relative interaction strength was found to be a function of the temperature (T) and applied magnetic field (h). The scaling relation \(R_c \sim h^{-\beta }f(Th^{\alpha })\), where \(\alpha =0.23\pm 0.01\) and \(\beta = -0.06\pm 0.01\), has been proposed, numerically by the method of data collapse. The metastable volume fractions, for both surface and bulk, were found to follow the Avrami’s law. The critical relative interaction strength (\(R_c\)) has been observed to decrease in an exponential (\(e^{bL^{-1.5}})\) fashion with the system size (L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data are available on request to Moumita Naskar (naskar.moumita18@gmail.com).]

References

  1. S. N. Piramanayagam , T. C. Chong, Development in data storage: material perspective, Wiley-IEEE Press, 2011

  2. R. Becker, W. Döring, Ann. Phys. (Leipzig) 24, 719 (1935)

    Article  ADS  Google Scholar 

  3. J. D. Gunton, M. Droz, Introduction to theory of Metastable and Unstable states, Springer-Verlag (1983), Berlin

  4. M. Acharyya, D. Stauffer, Eur. Phys. J. B 5, 571 (1998)

    Article  ADS  Google Scholar 

  5. P.A. Rikvold, H. Tomita, S. Miyashita, S.W. Sides, Phys. Rev. E 49, 5080 (1994)

    Article  ADS  Google Scholar 

  6. A. Misra, B.K. Chakrabarti, Physics A 246, 510 (1997)

    Article  ADS  Google Scholar 

  7. M. Acharyya, Physica Scripta 82, 065703 (2010)

    Article  ADS  Google Scholar 

  8. M. Acharyya, Physica A 403, 94 (2014)

    Article  ADS  Google Scholar 

  9. H. Vehkamäki, I.J. Ford, Phys. Rev. E 59, 6483 (1999)

    Article  ADS  Google Scholar 

  10. K. Binder, H. Müller-Krumbhaar, Phys. Rev. B 9, 2328 (1974)

    Article  ADS  Google Scholar 

  11. D. Hinzke, U. Nowak, Phys. Rev. B. 58, 265 (1998)

    Article  ADS  Google Scholar 

  12. W.R. Deskins, G. Brown, S.H. Thompson, P.A. Rikvold, Phys. Rev. B 84, 094431 (2011)

    Article  ADS  Google Scholar 

  13. M. Naskar, M. Acharyya, Physica A 551, 124583 (2020)

    Article  Google Scholar 

  14. A. Dhar, M. Acharyya, Commun. Theor. Phys. 66, 563 (2016)

    Article  ADS  Google Scholar 

  15. R. Dutta, M. Acharyya, A. Dhar, Heliyon 4, e00892 (2018)

    Article  Google Scholar 

  16. M. Naskar, M. Acharyya, Eur. Phys. J. B 94, 36 (2021)

    Article  ADS  Google Scholar 

  17. M. Naskar, M. Acharyya, Physica A 568, 125747 (2021)

    Article  Google Scholar 

  18. G. Gulpinar, E. Vatansever, M. Agartioglu, Phys. A 391, 3574 (2012)

    Article  Google Scholar 

  19. N.G. Fytas, J. Zierenberg, P.E. Theodorakis, M. Weigel, W. Janke, A. Malakis, Phys. Rev. E 97, 040102(R) (2018)

    Article  ADS  Google Scholar 

  20. W. Selke, J. Oitmaa, J. Phys. Condens. Mater. 22, 076004 (2010)

    Article  ADS  Google Scholar 

  21. M. Naskar, M. Acharyya, E. Vatansever , N. G. Fytas, cond-mat arxiv: 2103:06580

  22. H. Park, M. Pleimling, Phys. Rev. Lett. 109, 175703 (2012)

    Article  ADS  Google Scholar 

  23. K. Tauscher, M. Pleimling, Phys. Rev. E 89, 022121 (2014)

    Article  ADS  Google Scholar 

  24. P. Riego, A. Berger, Phys. Rev. E 91, 062141 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  26. W.A. Johnson, P.A. Mehl, Trans. Am. Inst. Min. Metall. Eng. 135, 416 (1939)

    Google Scholar 

  27. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  ADS  Google Scholar 

  28. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    Article  ADS  Google Scholar 

  29. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  ADS  Google Scholar 

  30. R.A. Ramos, P.A. Rikvold, M.A. Novotny, Phys. Rev. B 59, 9053 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

MN would like to acknowledge Swami Vivekananda Scholarship (SVMCMS) for financial support. MA acknowledges FRPDF grant of Presidency University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muktish Acharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, M., Acharyya, M. Competitive metastable behaviours of surface and bulk in Ising ferromagnet. Eur. Phys. J. B 94, 140 (2021). https://doi.org/10.1140/epjb/s10051-021-00158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00158-z

Navigation