Skip to main content
Log in

Phase transitions of a double occupancy lattice gas

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This article offers a detailed analysis of interacting particles in the two-dimensional square array, which is a coarse-graining model to study the multiple occupancy lattice gas system. The equilibrium properties with the maximum loading number 2 is obtained in this work. We find the large nearest neighbor interaction leads to the steeper isotherms and the large on-site interaction leads to the plateaus isotherms. The phase transitions are discussed, and the phase diagrams are obtained via the Monte Carlo simulations. By analyzing finite size effect and the hysteresis behavior, the phase boundaries and the tricritical points are located in the phase diagrams. Our results reveal the complex equilibrium phase transitions in the double occupancy lattice gas.

Graphic abstract

This article utilizes the double occupancy lattice gas to study the interacting particles in the two-dimensional square array. The equilibrium properties with the maximum loading number 2 is obtained in this work. The large nearest neighbor interaction leads to the steeper isotherms and the large on-site interaction leads to the plateaus isotherms. The phase diagram is obtained via the Monte Carlo simulations. By analyzing finite size effect and the hysteresis behavior, the phase boundaries and the tricritical points are located in the phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article is theoretical and has no associated experimental data, and all numerical data are included in the figures of Sect. 3.]

References

  1. M.E. Davis, Ordered porous materials for emerging applications. Nature 417, 813 (2002)

    Article  ADS  Google Scholar 

  2. L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Phase separation in confined systems. Rep. Prog. Phys. 62, 1573 (1999)

    Article  ADS  Google Scholar 

  3. F.G. Pazzona, P. Demontis, G.B. Suffritti, A grand-canonical Monte Carlo study of the adsorption properties of argon confined in ZIF-8: local thermodynamic modeling. J. Phys. Chem. C 117, 349 (2012)

    Article  Google Scholar 

  4. C. Tunca, D.M. Ford, A hierarchical approach to the molecular modeling of diffusion and adsorption at nonzero loading in microporous materials. Chem. Eng. Sci. 58, 3373 (2003)

    Article  Google Scholar 

  5. D.W. Siderius, V.K. Shen, Use of the grand canonical transition-matrix Monte Carlo method to model gas adsorption in porous materials. J. Phys. Chem. C 117, 5861 (2013)

    Article  Google Scholar 

  6. E. Beerdsen, D. Dubbeldam, B. Smit, Understanding diffusion in nanoporous materials. Phys. Rev. Lett. 96, 044501 (2006)

  7. R. Krishna, Diffusion in porous crystalline materials. Chem. Soc. Rev. 41, 3099 (2012)

    Article  Google Scholar 

  8. T. Becker, K. Nelissen, B. Cleuren, B. Partoens, C. Van den Broeck, Diffusion of interacting particles in discrete geometries. Phys. Rev. Lett. 111, 110601 (2013)

  9. P. Demonitis, F.G. Pazzona, G.B. Suffritti, A lattice-gas cellular automaton to model diffusion in restricted geometries. J. Phys. Chem. B 110, 13554 (2006)

    Article  Google Scholar 

  10. K. Binder, W. Kinzel, D.P. Landau, Theoretical aspects of order-disorder transitions in adsorbed layers. Surf. Sci. 117, 232 (1982)

    Article  ADS  Google Scholar 

  11. D.P. Landau, Critical and multicritical behavior in a triangular-lattice-gas Ising model: repulsive nearest-neighbor and attractive next-nearest-neighbor coupling. Phys. Rev. B 27, 5604 (1983)

    Article  ADS  Google Scholar 

  12. K. Binder, D.P. Landau, Square lattice gases with two-and three-body interactions: a model for the adsorption of hydrogen on Pd (100). Surf. Sci. 108, 503 (1981)

    Article  ADS  Google Scholar 

  13. J.-Q. Yin, D.P. Landau, Square lattice gases with two- and three-body interactions revisited: a row-shifted 2*2 phase. Phys. Rev. E 81, 031121 (2010)

  14. Y. He, R.B. Pandey, Driven diffusion, Kawasaki dynamics, mixing, and spatial ordering in an interacting lattice gas. Phys. Rev. Lett. 71, 565 (1993)

    Article  ADS  Google Scholar 

  15. R. Finken, J.-P. Hansen, A.A. Louis, Phase separation of a multiple occupancy lattice gas. J. Phys. A Math. Gen. 37, 577 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.J. Archer, A.M. Rucklidge, E. Knobloch, Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase. Phys. Rev. E 92, 012324 (2015)

  17. D. Frydel, Y. Levin, Soft-particle lattice gas in one dimension: one-and two-component cases. Phys. Rev. E 98, 062123 (2018)

  18. T. Becker, K. Nelissen, B. Cleuren, B. Partoens, C. Van den Broeck, Diffusion of interacting particles in discrete geometries: equilibrium and dynamical properties. Phys. Rev. E 90, 052139 (2014)

  19. M. Blume, Theory of the first-order magnetic phase change in \(UO_2\). Phys. Rev. 141, 517 (1966)

    Article  ADS  Google Scholar 

  20. H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966 (1966)

    Article  ADS  Google Scholar 

  21. H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting II. Physica 33, 295 (1967)

    Article  ADS  Google Scholar 

  22. H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting III. Physica 37, 423 (1967)

    Article  ADS  Google Scholar 

  23. A.K. Jain, D.P. Landau, Monte Carlo study of the fcc Blume-Capel model. Phys. Rev. B 22, 445 (1980)

    Article  ADS  Google Scholar 

  24. N.B. Wilding, P. Nielaba, Tricritical universality in a two-dimensional spin fluid. Phys. Rev. E 53, 926 (1996)

    Article  ADS  Google Scholar 

  25. D.P. Lara, J.A. Plascak, The critical behavior of the general spin Blume–Capel model. Int. J. Mod. Phys. B 12, 2045 (1998)

    Article  ADS  Google Scholar 

  26. J.C. Xavier, F.C. Alcaraz, D. Pena Lara, J.A. Plascak, Critical behavior of the spin-1 Blume-Capel model in two dimensions. Phys. Rev. E 57, 11575 (1998)

  27. W. Kwak, J. Jeong, J. Lee, D.-H. Kim, First-order phase transition and tricritical scaling behavior of the Blume-Capel model: a Wang-Landau sampling approach. Phys. Rev. E 92, 022134 (2015)

  28. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  29. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edn. (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  30. R.B. Griffiths, Thermodynamics near the two-fluid critical mixing point in He3-He4. Phys. Rev. Lett. 24, 715 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Wei Liu would like to thank Prof. David P. Landau for his valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant nos. 11405127 and 11805151.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yan, Z. & Zhou, G. Phase transitions of a double occupancy lattice gas. Eur. Phys. J. B 94, 133 (2021). https://doi.org/10.1140/epjb/s10051-021-00142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00142-7

Navigation