Skip to main content
Log in

Electromechanical coupling effect in the detection of nanomechanical motion

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electromechanical coupling in the nanomechanical detection experiment is important as people forever pursue the higher sensitivity. In this work, we have studied theoretically the electromechanical coupling effect on the sensitivity of nanomechanical motion with the mixing current detection method under monostable and bistable regime, respectively. To obtain the sensitivity, the response function, the shot noise and the backaction noise with the coupling in the nanomechanical system consists of the oscillator coupled to a quantum dot are present. It is found that for the monostable state, the higher coupling means higher sensitivity. Both the contributions of shot noise and the backaction noise to the sensitivity are the decreasing function of the coupling. Once the system enters the bistability regime, the telegraph noise dominates instead of the resonance frequency noise, that due to the electron hopping in the bistable regime contributes more noise for the detection, its value is 3 orders of magnitude larger than the contribution of shot noise. As a result, one could find that there is a optimal value of the coupling corresponding to the phase transition point where the sensitivity is the best. Our results provide the pioneer and useful approach for the detection experiment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. A. Benyamini, A. Hamo, S.V. Kusminskiy, F. von Oppen, S. Ilani, Nat. Phys. 10, 151 (2014)

    Article  Google Scholar 

  2. M. Ganzhorn, W. Wernsdorfer, Phys. Rev. Lett. 108, 175502 (2012)

    Article  ADS  Google Scholar 

  3. X.K.L. Ekinci, M.L. Roukes, Appl. Phys. Lett 84, 4469 (2004)

    Article  ADS  Google Scholar 

  4. J. Moser, J. Güttinger, A. Eichler, M.J. Esplandiu, D.E. Liu, M.I. Dykman, A. Bachtold, Nat. Nano. 8, 493 (2013)

    Article  Google Scholar 

  5. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, Nano Lett. 8, 3735 (2008)

    Article  ADS  Google Scholar 

  6. V. Puller, B. Lounis, F. Pistolesi, Phys. Rev. Lett. 110, 125501 (2013)

    Article  ADS  Google Scholar 

  7. V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T.A. Arias, P.L. McEuen, Nature 431, 284 (2004)

    Article  ADS  Google Scholar 

  8. J. Moser, A. Eichler, J. Güttinger, M.I. Dykman, A. Bachtold, Nat. Nano 9, 1007 (2014)

    Article  Google Scholar 

  9. F. Pistolesi, R. Shekhter, Phys. Rev. B 92, 035423 (2015)

    Article  ADS  Google Scholar 

  10. Y.M. Blanter, O. Usmani, a Y. V. Nazarov, Phys. Rev. Lett. 93, 136802 (2004)

    Article  ADS  Google Scholar 

  11. Y.M. Blanter, O. Usmani, a Y. V. Nazarov, Phys. Rev. Lett. 94, 049904 (2005)

    Article  ADS  Google Scholar 

  12. A.D. Armour, M.P. Blencowe, Y. Zhang, Phys. Rev. B 69, 125313 (2004)

    Article  ADS  Google Scholar 

  13. C.B. Doiron, W. Belzig, C. Bruder, Phys. Rev. B 74, 205336 (2006)

    Article  ADS  Google Scholar 

  14. R. Avriller, B. Murr, F. Pistolesi, Phys. Rev. B 97, 155414 (2018)

    Article  ADS  Google Scholar 

  15. F. Pistolesi, Phys. Rev. A 97, 063833 (2018)

    Article  ADS  Google Scholar 

  16. D. Mozyrsky, M.B. Hastings, I. Martin, Phys. Rev. B 73, 035104 (2006)

    Article  ADS  Google Scholar 

  17. J. Koch, F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005)

    Article  ADS  Google Scholar 

  18. F. Pistolesi, Phys. Rev. B 76 (2007). https://doi.org/10.1103/PhysRevB.76.165317

  19. F. Pistolesi, Y.M. Blanter, I. Martin, Phys. Rev. B 78, 085127 (2008)

    Article  ADS  Google Scholar 

  20. F. Pistolesi, J. Low Temp. Phys. 154, 199 (2009)

    Article  ADS  Google Scholar 

  21. S. Zippilli, G. Morigi, A. Bachtold, Phys. Rev. Lett. 102, 096804 (2009)

    Article  ADS  Google Scholar 

  22. P. Stadler, W. Belzig, G. Rastelli, Phys. Rev. Lett. 113, 047201 (2014)

    Article  ADS  Google Scholar 

  23. N.M. Chtchelkatchev, W. Belzig, C. Bruder, Phys. Rev. B 70, 193305 (2004)

    Article  ADS  Google Scholar 

  24. I. Mahboob, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, Phys. Rev. Lett. 110, 127202 (2013)

    Article  ADS  Google Scholar 

  25. I. Mahboob, H. Okamoto, K. Onomitsu, H. Yamaguchi, Phys. Rev. Lett. 113, 167203 (2014)

    Article  ADS  Google Scholar 

  26. R. Micchi, G.and Avriller, F. Pistolesi, Phys. Rev. Lett. 115 (2015), https://doi.org/10.1103/PhysRevLett.115.206802

  27. G. Micchi, R. Avriller, F. Pistolesi, Phys. Rev. B 94, 125417 (2016)

    Article  ADS  Google Scholar 

  28. O. Usmani, Y.M. Blanter, Y.V. Nazarov, Phys. Rev. B 75, 195312 (2007)

    Article  ADS  Google Scholar 

  29. B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, A. Bachtold, Science 325, 1107 (2009)

    Article  ADS  Google Scholar 

  30. Y. Wang, F. Pistolesi, Phys. Rev. B 95, 035410 (2017)

    Article  ADS  Google Scholar 

  31. Y. Wang, G. Micchi, F. Pistolesi, J. Phys. Cond. Matter 29, 465304 (2017)

    Article  ADS  Google Scholar 

  32. M. Poggio, M.P. Jura, C.L. Degen, M.A. Topinka, H.J. Mamin, D. Goldhaber-Gordon, D. Rugar, Nat. Phys. 4, 635 (2008)

    Article  Google Scholar 

  33. A.A. Clerk, Phys. Rev. B 70, 245306 (2004)

    Article  ADS  Google Scholar 

  34. M.P. Blencowe, M.N. Wybourne, Appl. Phys. Lett. 77, 3845 (2000)

    Article  ADS  Google Scholar 

  35. Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  36. J. Brüggemann, G. Weick, F. Pistolesi, F. von Oppen, Phys. Rev. B 85, 125441 (2012)

    Article  ADS  Google Scholar 

  37. A.A. Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, R.J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sailing Plan Project of Yibin University (No. 2021QH08). We thank G. Bary and Lin Li for careful read and useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Yue Wang contributed to the conception of the study, Futi Liu performed the numerical calculations and wrote the manuscript, Duohui Huang gave the analysis of the results and corrected the manuscript.

Corresponding author

Correspondence to Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, F. & Huang, D. Electromechanical coupling effect in the detection of nanomechanical motion . Eur. Phys. J. B 94, 107 (2021). https://doi.org/10.1140/epjb/s10051-021-00114-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00114-x

Navigation