Skip to main content
Log in

Thermodynamic behaviour of magnetocaloric quantities in spin-1/2 Ising square trilayer

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A spin-1/2, Ising trilayered ferrimagnetic system on square Bravais lattice is studied, employing Monte-Carlo simulation with the single spin-flip Metropolis algorithm. The bulk of such a system is formed by three layers, each of which is composed entirely either by A or B type of atoms, resulting in two distinct compositions: ABA and AAB and two different types of magnetic interactions: ferromagnetic between like atoms and antiferromagnetic between unlike atoms. For such systems, Inverse Absolute of Reduced Residual Magnetisation is the absolute value of the ratio of the extremum of the magnetisation in between compensation and critical points and the saturation magnetisation. Variation of relative interaction strengths in the Hamiltonian, for a range of values, leads to the shift of compensation point and critical point and changes in the magnitude of inverse absolute of reduced residual magnetisation. Probable mathematical forms of dependences of the inverse absolute of reduced residual magnetisation and temperature interval between the critical and compensation temperatures on controlling parameters are proposed in the absence of applied magnetic field and have obtained phase diagrams for both types of configurations from these relations. This alternative description of the simulated systems may help technologists design magnetocaloric materials according to desired characteristics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data, that support the findings of this study, are available from the author upon reasonable request.]

References

  1. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New York, 2008)

    Google Scholar 

  2. G. Connell, R. Allen, M. Mansuripur, J. Appl. Phys. 53, 7759 (1982)

    ADS  Google Scholar 

  3. J. Ostorero, M. Escorne, A. Pecheron-Guegan, F. Soulette, H. Le Gall, J. Appl. Phys. 75, 6103 (1994)

    ADS  Google Scholar 

  4. R.E. Camley, J. Barnaś, Phys. Rev. Lett. 63, 664 (1989)

    ADS  Google Scholar 

  5. M.H. Phan, S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007)

    ADS  Google Scholar 

  6. S. Ma, Z. Zhong, D. Wang et al., Eur. Phys. J. B 86, 133 (2013)

    ADS  Google Scholar 

  7. M.A. Herman, H. Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status, vol. 7 (Springer Science & Business Media, New York, 2012)

    Google Scholar 

  8. S.M. George, Chem. Rev. 110, 111 (2010)

    Google Scholar 

  9. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic Press, New York, 1999)

    Google Scholar 

  10. R.K. Singh, J. Narayan, Phys. Rev. B 41, 8843 (1990)

    ADS  Google Scholar 

  11. M. Stier, W. Nolting, Phys. Rev. B 84, 094417 (2011)

    ADS  Google Scholar 

  12. C.J.P. Smits, A.T. Filip, H.J.M. Swagten et al., Phys. Rev. B 69, 224410 (2004)

  13. G. Chern, L. Horng, W.K. Sheih, Phys. Rev. B 63, 094421 (2001)

    ADS  Google Scholar 

  14. P. Sankowski, P. Kacmann, Phys. Rev. B 71, 201303(R) (2005)

    ADS  Google Scholar 

  15. T. Maitra, A. Pradhan, S. Mukherjee, S. Mukherjee, A. Nayak, S. Bhunia, Phys. E 106, 357 (2019)

    Google Scholar 

  16. M. Godoy, W. Figueiredo, Phys. Rev. E 61, 218 (2000)

    ADS  Google Scholar 

  17. Y. Nakamura, Beweis des Adiabatensatzes. Phys. Rev. B 62, 11742 (2000)

    ADS  Google Scholar 

  18. M. Godoy, V.S. Leite, W. Figueiredo, Phys. Rev. B 69, 054428 (2004)

    ADS  Google Scholar 

  19. T. Balcerzak, K. Szałowski, Phys. A Stat. Mech. Appl. 395, 183 (2014)

    Google Scholar 

  20. K. Szałowski, T. Balcerzak, J. Phys. Condens. Matter 26, 386003 (2014)

    Google Scholar 

  21. K. Szalowski, T. Balcerzak, A. Bobak, J. Magn. Magn. Mater. 323, 2095 (2011)

    ADS  Google Scholar 

  22. I.J.L. Diaz, N.S. Branco, Phys. A Stat. Mech. Appl. 468, 158 (2017)

    Google Scholar 

  23. I.J.L. Diaz, N.S. Branco, Phys. A Stat. Mech. Appl. 490, 904 (2018)

    Google Scholar 

  24. J.P. Santos, F.S. Barreto, J. Magn. Magn. Mater. 439, 114 (2017)

    ADS  Google Scholar 

  25. I.J.L. Diaz, N.S. Branco, Phys. B 73, 529 (2017)

    Google Scholar 

  26. I.J.L. Diaz, N.S. Branco, Phys. A 540, 123014 (2019)

    Google Scholar 

  27. Y. Laosiritaworn, J. Poulter, J.B. Staunton, Phys. Rev. B 70, 104413 (2004)

    ADS  Google Scholar 

  28. A.V. Albano, K. Binder, Phys. Rev. E 85, 061601 (2012)

    ADS  Google Scholar 

  29. T.C. Lubensky, M.H. Rubin, Phys. Rev. B 12, 3885 (1975)

    ADS  Google Scholar 

  30. T. Kaneyoshi, Phys. A 293, 200 (2001)

    Google Scholar 

  31. T. Kaneyoshi, Solid State Commun. 152, 1686 (2012)

    ADS  Google Scholar 

  32. T. Kaneyoshi, Phys. B 407, 4358 (2012)

    ADS  Google Scholar 

  33. T. Kaneyoshi, General theory of fractal path integrals with applications to many-body theories and statistical physics. Phase Transit. 85, 264 (2012)

    Google Scholar 

  34. J. Oitmaa, R.R.P. Singh, Phys. Rev. B 85, 014428 (2012)

    ADS  Google Scholar 

  35. K. Ohno, Y. Okabe, Phys. Rev. B 39, 9764 (1989)

    ADS  Google Scholar 

  36. K.H. Benneman, Magnetic Properties of Low-Dimensional Systems (Springer, New York, 1986)

    Google Scholar 

  37. E. Albayrak, S. Akkaya, T. Cengiz, J. Magn. Magn. Mater. 321, 3726 (2009)

    ADS  Google Scholar 

  38. T. Balcerzak, I. Łuźniak, Phys. A 388, 357 (2009)

    Google Scholar 

  39. Y.I. Spichkin, A.M. Tishin, The Magnetocaloric Effect and its Applications (Institute of Physics Publishing, Philadelphia, 2003)

    Google Scholar 

  40. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    ADS  Google Scholar 

  41. E. von Warburg, Ann. Phys. 249(5), 141 (1881)

    Google Scholar 

  42. P. Debye, Ann. Phys. 386, 1154 (1926)

    Google Scholar 

  43. W.F. Giauque, J. Am. Chem. Soc. 49, 1864 (1927)

    Google Scholar 

  44. V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)

    ADS  Google Scholar 

  45. O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415, 150 (2002)

  46. V. Provenzano, A.J. Shapiro, R.D. Shull, Nature 429, 853 (2004)

    ADS  Google Scholar 

  47. Z.G. Xie, D.Y. Geng, Z.D. Zhang, Appl. Phys. Lett. 97, 202504 (2010)

    ADS  Google Scholar 

  48. S.K. Sajid, M. Acharyya, Phase Transit. 93, 62 (2020)

    Google Scholar 

  49. S. Chandra, M. Acharyya, AIP Conf. Proc. 2220, 130037 (2020)

    Google Scholar 

  50. Z. Fadil, M. Qajjour, A. Mhirech, B. Kabouchi, L. Bahmad, B.W. Ousi Benomar, Phys. B 564, 104 (2019)

    ADS  Google Scholar 

  51. Z. Fadil, A. Mhirech, B. Kabouchi, Superlattice Microstruct. 134, 106224 (2019)

    Google Scholar 

  52. Z. Fadil, M. Qajjour, A. Mhirech, J. Magn. Magn. Mater. 491, 165559 (2019)

    Google Scholar 

  53. Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad, B.W. Ousi Benomar, Solid State Commun. 113944, 316–317 (2020)

  54. M. Acharyya, Superlattice Microstruct. 147, 106648 (2020). https://doi.org/10.1016/j.spmi.2020.106648

    Article  Google Scholar 

  55. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, New York, 2000)

    MATH  Google Scholar 

  56. K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, New York, 1997)

    MATH  Google Scholar 

  57. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

  58. M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, New York, 1999)

    MATH  Google Scholar 

  59. W.P. Wolf, Braz. J. Phys. 30(4), 794 (2000)

    ADS  Google Scholar 

  60. J.W. Britton, B.C. Sawyer, A.C. Keith, C.C.J. Wang, J.K. Freericks, H. Uys, M.J. Biercuk, J.J. Bollinger, Nature 484, 489 (2012)

    ADS  Google Scholar 

  61. S. Chandra, arXiv preprint: arXiv: 2008.07808

  62. R. Jafari, Eur. Phys. J. B 85, 167 (2012)

    ADS  Google Scholar 

  63. J.D. Alzate-Cardona, M.C. Barrero-Moreno, E. Restrepo-Parra, J. Phys. Condens. Mater. 29, 445801 (2017)

    ADS  Google Scholar 

  64. J.D. Alzate-Cardona, D. Sabogal-Suarez, E. Restrepo-Parra, J. Magn. Magn. Mater. 429, 34 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The author appreciates the financial assistance provided in the form of a research fellowship by University Grants Commission, India and gratefully acknowledges Prof. Muktish Acharyya for his comments and critical suggestions. The author also extends his thanks to Tamaghna Maitra and Sangita Bera for technical assistance. Several insightful comments and suggestions made by the anonymous referee are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soham Chandra.

Appendix

Appendix

1.1 A1: Tables for different coefficients of AAB configuration

1.2 A2: Tables for phase diagram of AAB configuration

1.3 A3: Tables for different coefficients of ABA configuration

1.4 A4: Tables for phase diagram of ABA configuration

Table 12 Maximum values of \(J_{AA}/J_{BB}\) for a fixed \(J_{AB}/J_{BB}\) for which the compensation effect just ceases, from the fitted formula of variation of \(\Delta T\) of ABA configuration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, S. Thermodynamic behaviour of magnetocaloric quantities in spin-1/2 Ising square trilayer. Eur. Phys. J. B 94, 13 (2021). https://doi.org/10.1140/epjb/s10051-020-00031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00031-5

Navigation