Skip to main content
Log in

Enhanced negative differential resistance in silicene double-barrier resonant tunneling diodes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the transport properties of double-barrier resonant tunneling diodes based on silicene nanoribbons by means of transfer matrix method under the external electric field. It is found that the transmission shows resonance suppression (enhancement) under the positive (negative) bias. The spin-dependent and valley-dependent negative differential resistance (NDR) characteristics are found both in the symmetric and asymmetric structures. The influence of various factors on the I-V characteristics is analyzed, it is found that the NDR characteristics can be greatly enhanced by the structural parameters, Fermi energy, and band gap. What should be laid stress on is that the maximum peak-to-valley ratio (PVR) can reach up to 13 by regulating the band gap. Proposed structure here could be the base of other high-frequency electronics devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Leo, Phys. Rev 109, 603 (1958)

    Article  Google Scholar 

  2. E. Leo, Science 183, 1149 (1974)

    Article  Google Scholar 

  3. L.L. Chang, E. Leo, R. Tsu, Appl. Phys. Lett. 24, 593 (1974)

    Article  ADS  Google Scholar 

  4. F. Lleonard, J. Tersoff, Phys. Rev. Lett. 85, 4767 (2000)

    Article  ADS  Google Scholar 

  5. Y. Guo, B.L. Gu, J.Z. Yu, Z. Zeng, Y. Kawazoe, J. Appl. Phys. 84, 918 (1998)

    Article  ADS  Google Scholar 

  6. A.V. Malyshev, Phys. Rev. Lett. 98, 096801 (2007)

    Article  ADS  Google Scholar 

  7. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  8. V. Nam Do, V.H. Nguyen, P. Dollfus, A. Bournel, J. Appl. Phys. 104, 063708 (2008)

    Article  ADS  Google Scholar 

  9. E. Motohiko, New. J. Phys 14, 033003 (2012)

    Article  Google Scholar 

  10. V.H. Nguyen, A. Bournel, P. Dollfus, J. Appl. Phys. 109, 093706 (2011)

    Article  ADS  Google Scholar 

  11. G.J. Ferreira, M.N. Leuenberger, L. Daniel, J.C. Egues, Phys. Rev. B 84, 125453 (2011)

    Article  ADS  Google Scholar 

  12. Y. Song, H.C. Wu, Y. Guo, Appl. Phys. Lett. 102, 093118 (2013)

    Article  ADS  Google Scholar 

  13. Y. Wu, D.B. Farmer, W. Zhu, S.J. Han, C.D. Dimitrakopoulos, A.A. Bol, P. Avouri, Y.M. Lin, ACS. Nano. 6, 2610 (2012)

    Article  Google Scholar 

  14. X. Li, G. Zhang, X. Ba, X. Sun, X. Wang, E. Wang, H. Dat, Nat. Nanotechnol. 3, 538 (2008)

    Article  ADS  Google Scholar 

  15. K.T. Lam, G. Liang, Appl. Phys. Lett. 92, 223106 (2008)

    Article  ADS  Google Scholar 

  16. H. Min, B. Sahu, S.K. Banerjee, A.H. MacDonald, Phys. Rev. B 75, 155115 (2007)

    Article  ADS  Google Scholar 

  17. L. Liu, Z. Shen, Appl. Phys. Lett. 95, 252104 (2009)

    Article  ADS  Google Scholar 

  18. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994)

    Article  ADS  Google Scholar 

  19. M. Tahir, A. Manchon, K. Sabeeh, U. Schwingenschlögl, Appl. Phys. Lett. 102, 162412 (2013)

    Article  ADS  Google Scholar 

  20. N.D. Drummond, Z. Viktor, V.I. Fal’Ko, Phys. Rev. B 85, 075423 (2012)

    Article  ADS  Google Scholar 

  21. Z. Ni, H. Zhong, X. Jiang, R. Quhe, G. Luo, Y. Wang, M. Ye, J. Yang, J. Shi, J. Lu, Nanosecond 6, 7609 (2014)

    Google Scholar 

  22. R. Quhe, R. Fei, Q. Liu, J. Zheng, H. Li, C. Xu, Sci. Rep. 2, 853 (2012)

    Article  Google Scholar 

  23. H. Liu, N. Han, J. Zhao, J. Phys.: Condens. Matter 26, 475303 (2014)

    ADS  Google Scholar 

  24. L.C. Lew Yan Voon, E. Sandberg, R.S. Aga, A.A. Farajian, Appl. Phys. Lett. 97, 163114 (2010)

    Article  ADS  Google Scholar 

  25. C.H. Chen, W.W. Li, Y.M. Chang, C.Y. Lin, S.H. Yang, Y. Xu, Y.F. Lin, Phys. Rev. Appl. 10, 044047 (2018)

    Article  ADS  Google Scholar 

  26. F. Salimian, D. Dideban, Physica E 104, 268 (2018)

    Article  ADS  Google Scholar 

  27. F. Salimian, D. Dideban, Mater. Sci. Semicond. Process 93, 92 (2019)

    Article  Google Scholar 

  28. S. Singh, A.D. Sarkar, B. Singh, I. Kaur, RSC Adv. 7, 12783 (2017)

    Article  Google Scholar 

  29. X.F. Yang, Y.S. Liu, J.F. Feng, X.F. Wang, C.W. Zhang, F. Chi, J. Appl. Phys. 116, 124312 (2014)

    Article  ADS  Google Scholar 

  30. A.V. Andreev, Phys. Rev. B 99, 247204 (2007)

    Google Scholar 

  31. E.B. Sonin, Phys. Rev. B 79, 195438 (2009)

    Article  ADS  Google Scholar 

  32. C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  33. M. Ezawa, New. J. Phys 14, 033003 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Guo.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, DN., Guo, Y. & Song, Y. Enhanced negative differential resistance in silicene double-barrier resonant tunneling diodes. Eur. Phys. J. B 93, 188 (2020). https://doi.org/10.1140/epjb/e2020-10326-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10326-8

Keywords

Navigation