Skip to main content
Log in

Effects of fermion-fermion interactions and impurity scatterings on fermion velocities in the line-nodal superconductors

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the roles of both fermion-fermion interactions and impurities in pinning down the fates of fermion velocities in the line-nodal superconductors. Distinct sorts of four-fermion interactions and impurities as well as competitions among them are unbiasedly taken into account by adopting renormalization group approach. We firstly derive the coupled evolutions of all interaction parameters. Whether and how the interplay between fermionic interactions and impurities affects fermion velocities are then carefully studied. After performing the detailed analysis, we find the low-energy fates of fermion velocities are heavily dictated by fermion-fermion interactions. In addition to preserving isotropic, fermion velocities hinging sensitively upon initial values of interaction parameters can either exhibit extremely anisotropic or flow to certain finite anisotropy. With impurities being switched on, we reach that the behaviors of fermion velocities at clean limit are considerably robust. This indicates that fermion-fermion interactions dominate over the impurities in the low-energy regime. Moreover, several physical implications including the density of states and compressibility of fermionic quasiparticles are substantially modified due to the significant renormalization of fermion velocities in the low-energy regime.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barnzzn, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    MathSciNet  ADS  Google Scholar 

  2. M. Tinkham,Introduction to Superconductivity, Dover Books on Physics Series (Dover Publications, USA, 1996)

  3. P.W. Anderson,The Theory of Superconductivity in the High-Tc Cuprate Superconductors (Princeton University Press, Princeton, 1997)

  4. A. Larkin, A. Varlamov,Theory of fluctuations in superconductors (Oxford University Press, New York, 2005)

  5. P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    ADS  Google Scholar 

  6. H. Ding, T. Yokoya, J. Campuzano, T.T. Takahashi, M. Randeria, M. Norman, T. Mochiku, J. Giapintzakis, Nature (London) 382, 51 (1996)

    ADS  Google Scholar 

  7. A.C. Loeser, Z.-X. Shen, D. Desau, D. Marshall, C. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996)

    ADS  Google Scholar 

  8. T. Valla, A. Fedorov, P. Johnson, B. Wells, S. Hulbert, Q. Li, G. Gu, N. Koshizuka, Science 285, 2110 (1999)

    Google Scholar 

  9. T. Yoshida, X.J. Zhou, T. Sasagawa, W.L. Yang, P.V. Bogdanov, A. Lanzara, Z. Hussain, T. Mizokawa, A. Fujimori, H. Eisaki, Z.-X. Shen, T. Kakeshita, S. Uchida, Phys. Rev. Lett. 91, 027001 (2003)

    ADS  Google Scholar 

  10. F. Ronning, T. Sasagawa, Y. Kohsaka, K.M. Shen, A. Damascelli, C. Kim, T. Yoshida, N.P. Armitage, D.H. Lu, D.L. Feng, L.L. Miller, H. Takagi, Z.-X. Shen, Phys. Rev. B 67, 165101 (2003)

    ADS  Google Scholar 

  11. V.L. Berezinskii, Sov. Phys. JETP 61, 1144 (1971)

    MathSciNet  Google Scholar 

  12. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    ADS  Google Scholar 

  13. I. Bonalde, W. Bramer-Escamilla, E. Bauer, Phys. Rev. Lett. 94, 207002 (2005)

    ADS  Google Scholar 

  14. K. Izawa, Y. Kasahara, Y. Matsuda, K. Behnia, T. Yasuda, R. Settai, Y. Onuki, Phys. Rev. Lett. 94, 197002 (2005)

    ADS  Google Scholar 

  15. N. Tateiwa, Y. Haga, T.D. Matsuda, S. Ikeda, T. Yasuda, T. Takeuchi, R. Settai, Y. Onuki, J. Phys. Soc. Japan 74, 1903 (2005)

    ADS  Google Scholar 

  16. E. Slooten, T. Naka, A. Gasparini, Y. Huang, A. De. Visser, Phys. Rev. Lett. 103, 097003 (2009)

    ADS  Google Scholar 

  17. A. Gasparini, Y. Huang, N. Huy, J. Klaasse, T. Naka, E. Slooten, A. De. Visser, J. Low Temp. Phys. 161, 134 (2010)

    ADS  Google Scholar 

  18. J.-P. Reid, M. Tanatar, X. Luo, H. Shakeripour, N. Doiron-Leyraud, N. Ni, S. Budko, P. Canfield, R. Prozorov, L. Taillefer, Phys. Rev. B 82, 064501 (2010)

    ADS  Google Scholar 

  19. M. Tanatar, J.-P. Reid, H. Shakeripour, X. Luo, N. Doiron-Leyraud, N. Ni, S. BudKo, P. Canfield, R. Prozorov, L. Taillefer, Phys. Rev. Lett. 104, 067002 (2010)

    ADS  Google Scholar 

  20. C.-L. Song, Y.-L. Wang, P. Cheng, Y.-P. Jiang, W. Li, T. Zhang, Z. Li, K. He, L. Wang, J.-F. Jia, H.-H. Hung, C.-J. Wu, X. Ma, X. Chen, Q.-K. Xue, Science 332, 1410 (2011)

    ADS  Google Scholar 

  21. T. Watashige, Y. Tsutsumi, T. Hanaguri, Y. Kohsaka, S. Kasahara, A. Furusaki, M. Sigrist, C. Meingast, T. Wolf, H.v. Lohneysen, T. Shibauchi, Y. Matsuda, Phys. Rev. X 5, 031022 (2015)

    Google Scholar 

  22. J.-P. Reid, M. Tanatar, X. Luo, H. Shakeripour, S.R. de. Cotret, N. Doiron-Leyraud, J. Chang, B. Shen, H.-H. Wen, H. Kim, R. Prozorov, N. Doiron-Leyraud, L. Taillefer, Phys. Rev. B 93, 214519 (2016)

    ADS  Google Scholar 

  23. K. Sun, H. Yao, E. Fradkin, S.A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009)

    ADS  Google Scholar 

  24. V. Cvetkovic, R.E. Throckmorton, O. Vafek, Phys. Rev. B 86, 075467 (2012)

    ADS  Google Scholar 

  25. J.M. Murray, O. Vafek, Phys. Rev. B 89, 201110(R) (2014)

    ADS  Google Scholar 

  26. B. Dora, I.F. Herbut, R. Moessner, Phys. Rev. B 90, 045310 (2014)

    ADS  Google Scholar 

  27. I.F. Herbut, L. Janssen, Phys. Rev. Lett. 113, 106401 (2014)

    ADS  Google Scholar 

  28. L. Janssen, I.F. Herbut, Phys. Rev. B 92, 045117 (2015)

    ADS  Google Scholar 

  29. I. Boettcher, I.F. Herbut, Phys. Rev. B 93, 205138 (2016)

    ADS  Google Scholar 

  30. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)

    ADS  Google Scholar 

  31. Y. Matsuda, K. Izawa, I. Vekhter, J. Phys. Condens. Matter 18, R705 (2006)

    ADS  Google Scholar 

  32. M. Vojta, Y. Zhang, S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000)

    ADS  Google Scholar 

  33. M. Vojta, Y. Zhang, S. Sachdev, Int. J. Mod. Phys. B 14, 3719 (2000)

    ADS  Google Scholar 

  34. M. Vojta, S. Sachdev, Adv. Solid State Phys. (Springer) 329, 341 (2001)

    Google Scholar 

  35. S. Sachdev,Quantum Phase Transitions (Cambridge University Press, Cambridge, UK, 1999)

  36. M. Vojta, Rep. Prog. Phys. 66, 2069 (2003)

    ADS  Google Scholar 

  37. H.v. Lohneysen, A. Rosch, M. Vojta, P. Wolfle, Rev. Mod. Phys. 79, 1015 (2007)

    ADS  Google Scholar 

  38. J. Wang, J. Phys. Condens. Matter 30, 125401 (2018)

    ADS  Google Scholar 

  39. Y.-M. Dong, D.-X. Zheng, J. Wang, J. Phys. Condens. Matter 31, 275601 (2019)

    Google Scholar 

  40. J. Wang, Eur. Phys. J. B 92, 102 (2019)

    ADS  Google Scholar 

  41. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    ADS  Google Scholar 

  42. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  43. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    ADS  Google Scholar 

  44. A. Altland, B.D. Simons, M.R. Zirnbauer, Phys. Rep. 359, 283 (2002)

    MathSciNet  ADS  Google Scholar 

  45. E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein, A.P. Mackenzie, Annu. Rev. Condens. Matter Phys. 1, 153 (2010)

    ADS  Google Scholar 

  46. S.S. Das, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    ADS  Google Scholar 

  47. S. Sachdev,Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2011)

  48. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, Neto. A.H. Castro, Rev. Mod. Phys. 84, 1067 (2012)

    ADS  Google Scholar 

  49. J. Wang, G.-Z. Liu, H. Kleinert, Phys. Rev. B 83, 214503 (2011)

    ADS  Google Scholar 

  50. J. Wang, Phys. Rev. B 87, 054511 (2013)

    ADS  Google Scholar 

  51. I.L. Aleiner, K.B. Efetov, Phys. Rev. Lett. 97, 236801 (2006)

    ADS  Google Scholar 

  52. M.S. Foster, I.L. Aleiner, Phys. Rev. B 77, 195413 (2008)

    ADS  Google Scholar 

  53. Y.-L. Lee, and Y.-W. Lee, Phys. Rev. B 96, 045115 (2017)

    ADS  Google Scholar 

  54. A.A. Nersesyan, A.M. Tsvelik, F. Wenger, Nucl. Phys. B 438, 561 (1995)

    ADS  Google Scholar 

  55. T. Stauber, F. Guinea, M. A. H. Vozmediano, Phys. Rev. B 71, 041406 (2005)

    ADS  Google Scholar 

  56. R.M. Nandkishore, S.A. Parameswaran, Phys. Rev. B 95, 205106 (2017)

    ADS  Google Scholar 

  57. Y.-X. Wang, R.M. Nandkishore, Phys. Rev. B 96, 115130 (2017)

    ADS  Google Scholar 

  58. R. Nandkishore, D.A. Huse, S.L. Sondhi, Phys. Rev. B 89, 245110 (2014)

    ADS  Google Scholar 

  59. B. Roy, Phys. Rev. B 96, 041113 (2017)

    ADS  Google Scholar 

  60. S. Sur, B. Roy, Phys. Rev. Lett. 123, 207601 (2019)

    ADS  Google Scholar 

  61. B. Roy, V. Juricic, S.D. Sarma, Sci. Rep. 6, 32446 (2016)

    ADS  Google Scholar 

  62. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    ADS  Google Scholar 

  63. J. Polchinski, https://arXiv:hep-th/9210046 (1992)

  64. R. Shankar, Rev. Mod. Phys. 66, 129 (1994)

    ADS  Google Scholar 

  65. S.E. Han, G.Y. Cho, E.G. Moon, Phys. Rev. B 95, 094502 (2017)

    ADS  Google Scholar 

  66. S. Matsuura, P.Y. Chang, A.P. Schnyder, S. Ryu, New. J. Phys. 15, 065001 (2013)

    MathSciNet  ADS  Google Scholar 

  67. P. Frigeri, D. Agterberg, A. Koga, M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004)

    ADS  Google Scholar 

  68. P. Brydon, A.P. Schnyder, C. Timm, Phys. Rev. B 84, 020501 (2011)

    ADS  Google Scholar 

  69. J. Wang, C. Ortix, J. van den Brink, D.V. Efremov, Phys. Rev. B 96, 201104(R) (2017)

    ADS  Google Scholar 

  70. A. Altland, B. Simons,Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006)

  71. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    ADS  Google Scholar 

  72. P. Coleman,Introduction to Many Body Physics (Cambridge University Press, Cambridge, 2015)

  73. J. Wang, G.-Z. Liu, Phys. Rev. D 90, 125015 (2014)

    ADS  Google Scholar 

  74. Y. Huh, S. Sachdev, Phys. Rev. B 78, 064512 (2008)

    ADS  Google Scholar 

  75. E.-A. Kim, M.J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, Phys. Rev. B 77, 184514 (2008)

    ADS  Google Scholar 

  76. J.-H. She, J. Zaanen, A.R. Bishop, A.V. Balatsky, Phys. Rev. B 82, 165128 (2010)

    ADS  Google Scholar 

  77. J.-H. She, M.J. Lawler, E.-A. Kim, Phys. Rev. B 92, 035112 (2015)

    ADS  Google Scholar 

  78. J. Wang, G.-Z. Liu, Phys. Rev. B 92, 184510 (2015)

    ADS  Google Scholar 

  79. J. Wang, G.-Z. Liu, D.V. Efremov, J. van. den. Brink, Phys. Rev. B 95, 024511 (2017)

    ADS  Google Scholar 

  80. J. Wang, Phys. Lett. A 379, 1917 (2015)

    MathSciNet  ADS  Google Scholar 

  81. G.-Z. Liu, J.-R. Wang, J. Wang, Phys. Rev. B 85, 174525 (2012)

    ADS  Google Scholar 

  82. I.S. Gradshteyn, I.M. Ryzhik,Table of Integrals, Series, and Products, 7th edn. (Academic Press, America, 2007)

  83. S.A. Kivelson, E. Fradkin, V.J. Emery, Nature (London), 393, 550 (1998)

    ADS  Google Scholar 

  84. H. Yamase, H. Kohno, J. Phys. Soc. Jpn. 69, 332 (2000)

    ADS  Google Scholar 

  85. H. Yamase, H. Kohno, J. Phys. Soc. Jpn. 69, 2151 (2000)

    ADS  Google Scholar 

  86. C.J. Halboth, W. Metzner, Phys. Rev. Lett. 85, 5162 (2000)

    ADS  Google Scholar 

  87. P.A. Lee, X.-G. Wen, Phys. Rev. Lett. 78, 4111 (1997)

    ADS  Google Scholar 

  88. A.C. Durst, P.A. Lee, Phys. Rev. B 62, 1270 (2000)

    ADS  Google Scholar 

  89. W.N. Hardy, D.A. Bonn, C.D. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993)

    ADS  Google Scholar 

  90. Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kief, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, G. Xiao, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, X.H. Yu, Phys. Rev. Lett. 62, 2317 (1989)

    ADS  Google Scholar 

  91. G. Mahan,Many-Particle Physics, 2nd edn. (Plenum, New York, 1990)

  92. J. Wang, G.-Z. Liu, Phys. Rev. D 85, 105010 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, YH., Wang, J. Effects of fermion-fermion interactions and impurity scatterings on fermion velocities in the line-nodal superconductors. Eur. Phys. J. B 93, 86 (2020). https://doi.org/10.1140/epjb/e2020-10049-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10049-x

Keywords

Navigation