Skip to main content
Log in

Frequency mismatch induces Bellerophon state and mixed explosive synchronization in a two-dimensional lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study synchronization of coupled phase oscillators with linear natural frequencies in a two-dimensional lattice. The effects of two typical frequency layouts on synchronization dynamics are analyzed and discussed. The results show that the two typical frequency layouts induce two interesting dynamical behaviors. One is the Bellerophon state, the other is a mixed explosive synchronization. The Bellerophon state is a transitional state between the incoherent state and the π state, in which neither the instantaneous phases nor the instantaneous frequencies of the oscillators are locked. But the oscillators split into a series of discrete clusters and each cluster shares a unique effective frequency. The mixed explosive synchronization means that the synchronization transition is not a sudden jump, but always accompanied with continuous phase transitions. Our current work may provide a new insight into understanding of the Bellerophon state and the mixed explosive synchronization in homogenous networks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pivkosky, M. Rosenblum, J. Kurths,Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003)

  2. S. Boccaletti,The Synchronized Dynamics of Complex Systems (Elsevier, Amsterdam, 2008)

  3. F. Dorfler, F. Bullo, SIAM J. Control. Optim. 50, 1616 (2012)

    Article  MathSciNet  Google Scholar 

  4. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  5. J.A. Acebron, L.L. Bonilla, C.J.P. Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  6. J. Lu, H. Liu, J. Chen,Synchronization in Complex Dynamical Networks (Higher Education Press, Beijing, 2016)

  7. R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  10. S. Boccaletti, J.A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendina-Nadal, Z. Wang, Y. Zou, Phys. Rep. 660, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. J.D. da Fonseca, C.V. Abud, J. Stat. Mech. 18, 103204 (2018)

    Article  Google Scholar 

  12. C.A. Moreira, M.A.M. de Aguiar, Physica A 514, 487 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984)

  14. S.H. Strogatz, Physica D 143, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Z. Zheng, G. Hu, B. Hu, Phys. Rev. Lett. 81, 5318 (1998)

    Article  ADS  Google Scholar 

  16. S.H. Strogatz, R.E. Mirollo, Physica D 31, 143 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Hong, M.Y. Choi, Phys. Rev. E 65, 047104 (2002)

    Article  ADS  Google Scholar 

  18. J. Rogge, D. Aeyels, J. Phys. A 37, 11135 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Ma, K. Yoshikawa, Phys. Rev. E 79, 046217 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. H.F. El-Nashar, H.A. Cerdeira, Commun. Nonlinear Sci. Numer. Simulat. 16, 4508 (2011)

    Article  ADS  Google Scholar 

  21. W. Chen, W. Liu, Y. Lan, J. Xiao, Commun. Nonlinear Sci. Numer. Simulat. 70, 271 (2019)

    Article  ADS  Google Scholar 

  22. J. Davidsen, R. Kapral, Phys. Rev. E 66, 055202 (2002)

    Article  ADS  Google Scholar 

  23. T.E. Lee, H. Tam, G. Refael, J.L. Rogers, M.C. Cross, Phys. Rev. E 82, 036202 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Y. Wu, J. Xiao, G. Hu, M. Zhan, Europhys. Lett. 97, 40005 (2012)

    Article  ADS  Google Scholar 

  25. I. Leyva, A. Navas, I. Sendina-Nadal, J.A. Almendral, J.M. Buld, M. Zanin, D. Papo, S. Boccaletti, Sci. Rep. 3, 01281 (2013)

    Article  ADS  Google Scholar 

  26. J. Gomez-Gardenes, S. Gomez, A. Arenas, Y. Moreno, Phys. Rev. Lett. 106, 128701 (2011)

    Article  ADS  Google Scholar 

  27. L. Zhu, L. Tian, D. Shi, Phys. Rev. E 88, 042921 (2013)

    Article  ADS  Google Scholar 

  28. P.S. Skardal, D. Taylor, J. Sun, Phys. Rev. Lett. 113, 144101 (2014)

    Article  ADS  Google Scholar 

  29. P.S. Skardal, A. Arenas, Phys. Rev. E 89, 062811 (2014)

    Article  ADS  Google Scholar 

  30. Y. Zou, T. Pereira, M. Small, Z. Liu, J. Kurths, Phys. Rev. Lett. 112, 114102 (2014)

    Article  ADS  Google Scholar 

  31. X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Phys. Rev. Lett. 114, 038701 (2015)

    Article  ADS  Google Scholar 

  32. I. Sendina-Nadal, I. Leyva, A. Navas, J.A. Villacorta-Atienza, J.A. Almendral, Z. Wang, S. Boccaletti, Phys. Rev. E 91, 032811 (2015)

    Article  ADS  Google Scholar 

  33. F. Sorrentino, L.M. Pecora, A.M. Hagerstrom, T.E. Murphy, R. Roy, Sci. Adv. 2, 1501737 (2016)

    Article  ADS  Google Scholar 

  34. H. Bi, Y.Li, L. Zhou, S. Guan, Front. Phys. 12, 126801 (2017)

    Article  Google Scholar 

  35. C. Wang, Y. Zou, S. Guan, J. Kurths, New J. Phys. 19, 123036 (2017)

    Article  ADS  Google Scholar 

  36. V. Avalos-Gaytan, J.A. Almendral, I. Leyva, F. Battiston, V. Nicosia, V. Latora, S. Boccaletti, Phys. Rev. E 97, 042301 (2018)

    Article  ADS  Google Scholar 

  37. L. Cao, C. Tian, Z. Wang, X. Zhang, Z. Liu, Phys. Rev. E 97, 022220 (2018)

    Article  ADS  Google Scholar 

  38. N. Lotfi, F.A. Rodrigues, A.H. Darooneh, Chaos 28, 033102 (2018)

    Article  ADS  Google Scholar 

  39. D. Yuan, J. Tian, F. Lin, D. Ma, J. Zhang, H. Cui, Y. Xiao, Front. Phys. 13, 130504 (2018)

    Article  Google Scholar 

  40. I. Leyva, A. Navas, I. Sendina-Nadal, S. Boccaletti, Discr. Continu. Dyn. Syst. Ser. B 23, 1931 (2018)

    Google Scholar 

  41. S.H. Yook, Y. Kim, Phys. Rev. E 97, 042317 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. H. Hong, S.H. Strogatz, Phys. Rev. E 84, 046202 (2011)

    Article  ADS  Google Scholar 

  43. H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, S. Guan, Phys. Rev. Lett. 117, 204101 (2016)

    Article  ADS  Google Scholar 

  44. T. Qiu, S. Boccaletti, I. Bonamassa, Y. Zou, J. Zhou, Z. Liu, S. Guan, Sci. Rep. 6, 36713 (2016)

    Article  ADS  Google Scholar 

  45. W. Zhou, Y. Zou, J. Zhou, Z. Liu, S. Guan, Chaos 26, 123117 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. L. Zhu, Physica D 391, 111 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-Hua Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, LH., Yuan, WJ. Frequency mismatch induces Bellerophon state and mixed explosive synchronization in a two-dimensional lattice. Eur. Phys. J. B 92, 177 (2019). https://doi.org/10.1140/epjb/e2019-100203-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100203-2

Keywords

Navigation