Skip to main content
Log in

Stochastic thermodynamics of holonomic systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Stochastic thermodynamics is a recently introduced approach to deals with small systems in contact with one or more thermal baths. This theory has been applied to systems of unconstrained particles to investigate the role of the thermodynamics principles in micro- and nano-scale systems and to demonstrate some important fluctuations theorems. Nowadays, the manipulations of small systems with advanced nanotechnologies provided the experimental evidence of most of results based on stochastic thermodynamics. Here, this approach is generalized to consider arbitrary holonomic systems subjected to arbitrary external forces and described by Lagrange and Hamilton equations of motion. In both the underdamped and overdamped cases, the principles of thermodynamics are obtained in the out-of-equilibrium regime by giving microscopic interpretations of heat, energy and entropy. To do this, the Klein-Kramers (for the underdamped case) and Smoluchowski (for the overdamped case) equations are used in covariant form to be consistent with the Brownian motion on smooth manifolds. Moreover, explicit expressions for the entropy production have been obtained and can be applied to the non-equilibrium thermodynamics of holonomic systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Brown, Philos. Mag. 4, 161 (1828)

    Article  Google Scholar 

  2. R. Brown, Philos. Mag. 6, 161 (1829)

    Article  Google Scholar 

  3. A. Fick, Ann. Phys. (Leipzig) 19, 371 (1855)

    Google Scholar 

  4. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905)

    Article  ADS  Google Scholar 

  5. A. Einstein, Ann. Phys. (Leipzig) 19, 371 (1906)

    Article  ADS  Google Scholar 

  6. M. von Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906)

    Article  ADS  Google Scholar 

  7. P. Langevin, C. R. Acad. Sci. (France) 146, 530 (1908)

    Google Scholar 

  8. J.B. Perrin, C. R. Acad. Sci. (France) 158, 1168 (1914)

    Google Scholar 

  9. J.B. Perrin, Discontinuous Structure of Matter, Nobel Lecture, 1926

  10. A.D. Fokker, Ann. Phys. 348, 810 (1914)

    Article  Google Scholar 

  11. M. Planck, Sitzungsber. Preuss. Akad. Wiss. 324, 142 (1917)

    Google Scholar 

  12. A. Kolmogoroff, Math. Ann. 104, 415 (1931)

    Article  MathSciNet  Google Scholar 

  13. O. Klein, Arkiv für Matematik, Astronomi och Fysik 16, 1 (1921)

    Google Scholar 

  14. H.A. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  Google Scholar 

  16. W. Coffey, Adv. Chem. Phys. 63, 69 (1985)

    Google Scholar 

  17. N.G. van Kampen,Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1981)

  18. H. Risken,The Fokker-Planck equation (Springer Verlag, Berlin, 1989)

  19. W.T. Coffey, Yu.P. Kalmykov, J.P. Waldron,The Langevin equation (World Scientific, Singapore, 2004)

  20. K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997)

    Article  ADS  Google Scholar 

  21. K. Sekimoto,Stochastic Energetics (Springer, Berlin, 2010)

  22. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  23. U. Seifert, Eur. Phys. J. B 64, 423 (2008)

    Article  ADS  Google Scholar 

  24. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  25. J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Esposito, C. Van den Broeck, Phys. Rev. E 82, 011143 (2010)

    Article  ADS  Google Scholar 

  27. C. Van den Broeck, M. Esposito, Phys. Rev. E 82, 011144 (2010)

    Article  ADS  Google Scholar 

  28. T. Tomé, M.J. de Oliveira, Phys. Rev. E 82, 021120 (2010)

    Article  ADS  Google Scholar 

  29. T. Tomé, M.J. de Oliveira, Phys. Rev. Lett. 108, 020601 (2012)

    Article  ADS  Google Scholar 

  30. T. Tomé, M.J. de Oliveira, Phys. Rev. E 91, 042140 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  32. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  33. G. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  34. D. Collin, F. Ritort, C. Jarzynski, S.B. Smith, I. Tinoco, C. Bustamante, Nature 437, 231 (2005)

    Article  ADS  Google Scholar 

  35. C. Jarzynski, C. R. Phys. 8, 495 (2007)

    Article  ADS  Google Scholar 

  36. M. Esposito, U. Harbola, S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)

    Article  ADS  Google Scholar 

  37. P. Caldirola, L.A. Lugiato, Physica A 116, 248 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  38. A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  39. B. Bianco, E. Moggia, S. Giordano, W. Rocchia, A. Chiabrera, Il Nuovo Cimento 116, 155 (2001)

    Google Scholar 

  40. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

    Article  ADS  Google Scholar 

  41. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009)

    Article  ADS  Google Scholar 

  42. G. Watanabe, P. Venkatesh, P. Talkner, M. Campisi, P. Hänggi, Phys. Rev. E 89, 032114 (2014)

    Article  ADS  Google Scholar 

  43. S.M. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996)

    Article  ADS  Google Scholar 

  44. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995)

    Article  ADS  Google Scholar 

  45. F. Ritort, J. Phys.: Condens. Matter 18, R531 (2006)

    ADS  Google Scholar 

  46. F. Manca, S. Giordano, P.L. Palla, R. Zucca, F. Cleri, L. Colombo, J. Chem. Phys. 136, 154906 (2012)

    Article  ADS  Google Scholar 

  47. F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, J. Chem. Phys. 137, 244907 (2012)

    Article  ADS  Google Scholar 

  48. M. Rief, J.M. Fernandez, H.E. Gaub, Phys. Rev. Lett. 81, 4764 (1998)

    Article  ADS  Google Scholar 

  49. F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, Phys. Rev. E 87, 032705 (2013)

    Article  ADS  Google Scholar 

  50. M. Benedito, S. Giordano, J. Chem. Phys. 149, 054901 (2018)

    Article  ADS  Google Scholar 

  51. M. Benedito, S. Giordano, Phys. Rev. E 98, 052146 (2018)

    Article  ADS  Google Scholar 

  52. M. Benedito, F. Manca, S. Giordano, Inventions 4, 19 (2019)

    Article  Google Scholar 

  53. R.G. Winkler, Soft Matter 6, 6183 (2010)

    Article  ADS  Google Scholar 

  54. F. Manca, S. Giordano, P.L. Palla, F. Cleri, Physica A 395, 154 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  55. K. Svoboda, C. Schmidt, B. Schnapp, S. Block, Nature 365, 721 (1993)

    Article  ADS  Google Scholar 

  56. M. Magnasco, Phys. Rev. Lett. 71, 1477 (1993)

    Article  ADS  Google Scholar 

  57. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  58. R. Perez-Carrasco, J.M. Sancho, Phys. Rev. E 84, 041915 (2011)

    Article  ADS  Google Scholar 

  59. L. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)

    Google Scholar 

  60. T.L. Gilbert, Phys. Rev. 100, 1243 (1955) (abstract only)

    Google Scholar 

  61. T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004)

    Article  ADS  Google Scholar 

  62. W.F. Brown, J. Appl. Phys. 30, S130 (1959)

    Article  ADS  Google Scholar 

  63. W.F. Brown, IEEE Trans. Magn. 15, 1196 (1979)

    Article  ADS  Google Scholar 

  64. G. Bertotti, I. Mayergoyz, C. Serpico,Nonlinear Magnetization Dynamic in Nanosystems (Elsevier, Oxford, 2000)

  65. D.R. Fredkin, Physica B 306, 26 (2001)

    Article  ADS  Google Scholar 

  66. S.I. Denisov, K. Sakmann, P. Talkner, P. Hänggi, Phys. Rev. B 75, 184432 (2007)

    Article  ADS  Google Scholar 

  67. P.M. Déjardin, D.S.F. Crothers, W.T. Coffey, D.J. McCarthy, Phys. Rev. E 63, 021102 (2001)

    Article  ADS  Google Scholar 

  68. S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, Eur. Phys. J. B 86, 249 (2013)

    Article  ADS  Google Scholar 

  69. S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod, V. Preobrazhensky, J. Phys. D: Appl. Phys. 46, 325002 (2013)

    Article  Google Scholar 

  70. N. Tiercelin, Y. Dusch, S. Giordano, A. Klimov, V. Preobrazhensky, P. Pernod, inNanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing, edited by S. Bandyopadhyay, J. Atulasimha (John Wiley & Sons Ltd, Chichester, 2016), Chap. 8

  71. R. Pan, T.M. Hoang, Z. Fei, T. Qiu, J. Ahn, T. Li, H.T. Quan, Phys. Rev. E 98, 052105 (2018)

    Article  Google Scholar 

  72. Y. Murashita, M. Esposito, Phys. Rev. E 94, 062148 (2016)

    Article  ADS  Google Scholar 

  73. F. Manca, P.-M. Déjardin, S. Giordano, Ann. Phys. (Berlin) 528, 381 (2016)

    Article  ADS  Google Scholar 

  74. M. Fixman, Proc. Natl. Acad. Sci. USA 71, 3050 (1974)

    Article  ADS  Google Scholar 

  75. G. Ciccotti, M. Ferrario, inClassical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, Singapore, 1998), Chap. 4

  76. G. Ciccotti, M. Ferrario, Computation 6, 11 (2018)

    Article  Google Scholar 

  77. F. Gantmacher,Lectures in Analytical Mechanics (MIR Publisher, Moscow, 1975)

  78. K. Itô, Nagoya Math. J. 1, 35 (1950)

    Article  MathSciNet  Google Scholar 

  79. R.L. Stratonovich, SIAM J. Control Optim. 4, 362 (1966)

    Article  Google Scholar 

  80. P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  81. Yu.L. Klimontovich,Statistical Theory of Open Systems (Kluver Academic, Dordrecht, 1995)

  82. I.M. Sokolov, Chem. Phys. 375, 359 (2010)

    Article  Google Scholar 

  83. S.I. Denisov, A.N. Vitrenko, W. Horsthemke, Phys. Rev. E 68, 046132 (2003)

    Article  ADS  Google Scholar 

  84. V. Méndez, S.I. Denisov, D. Campos, W. Horsthemke, Phys. Rev. E 90, 012116 (2014)

    Article  ADS  Google Scholar 

  85. J.W. Gibbs,Elementary principles in statistical mechanics (Charles Scribner’s Sons, New York, 1902)

  86. H. White, Bull. Math. Biophys. 27, 135 (1965)

    Article  Google Scholar 

  87. V. Hnizdo, M.K. Gilson, Entropy 12, 578 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  88. M. Polettini, J. Stat. Mech.: Theory Exp. 2013, P07005 (2013)

    Article  MathSciNet  Google Scholar 

  89. M.P. do CarmoDifferential Geometry of Curves and Surfaces (Prentice-Hall, New York, 1976)

  90. T. Levi-Civita,The absolute differential calculus (Blackie & Son Limited, London, 1946)

  91. P. Castro-Villarreal, J. Stat. Mech.: Theory Exp. 2010, P08006 (2010)

    Article  Google Scholar 

  92. P. Castro-Villarreal, J. Stat. Mech.: Theory Exp. 2014, P05017 (2014)

    Article  MathSciNet  Google Scholar 

  93. P. Castro-Villarreal, A. Villada-Balbuena, J.M. Méndez-Alcaraz, R. Castañeda-Priego, S. Estrada-Jiménez, J. Chem. Phys. 140, 214115 (2014)

    Article  ADS  Google Scholar 

  94. H. Kleinert, S.V. Shabanov, J. Phys. A: Math. Gen. 31, 7005 (1998)

    Article  ADS  Google Scholar 

  95. Z. Schuss,Theory and Applications of Stochastic Differential Equations (John Wiley & Sons, New York, 1980)

  96. Z. Schuss,Theory and Applications of Stochastic Processes (Springer, New York, 2010)

  97. P. Hsu, Contemp. Math. AMS 73, 95 (1988)

    Article  Google Scholar 

  98. K. Itô, inProc. Internat. Congr. Math. (Stockholm, Inst. Mittag-Leffler, Djursholm, 1962), p. 536

  99. W.S. Kendall, Acta Appl. Math. 9, 29 (1987)

    Article  MathSciNet  Google Scholar 

  100. D.W. Stroock, Bull. Amer. Math. Soc. 33, 135 (1996)

    Article  MathSciNet  Google Scholar 

  101. R. Graham, Z. Phys. B 26, 397 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  102. H. Grabert, M.S. Green, Phys. Rev. A 19, 1747 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  103. H. Grabert, R. Graham, M.S. Green, Phys. Rev. A 21, 2136 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  104. G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930)

    Article  ADS  Google Scholar 

  105. M.C. Wang, G.E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945)

    Article  ADS  Google Scholar 

  106. N.G. van Kampen, J. Stat. Phys. 44, 1 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Giordano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, S. Stochastic thermodynamics of holonomic systems. Eur. Phys. J. B 92, 174 (2019). https://doi.org/10.1140/epjb/e2019-100162-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100162-6

Keywords

Navigation