Skip to main content
Log in

Multi stability and global bifurcations in epidemic model with distributed delay SIRnS-model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Many diseases, such as influenza and the common cold, cause recurrent epidemics. The classical SIRS model fails to obtain recurrent epidemics as it predicts a globally stable endemic fixed point. This endemic fixed point is, however, linearly unstable for most parameters, if one assumes that the time spent in the recovered state is deterministic rather than exponentially distributed. In that case all trajectories converge to a stable epidemic limit cycle. It has been shown that a similar region of instability exists for systems with intermediate immune time distributions. Furthermore, it has been suggested that a bistable region could exist. Here, we first characterize this bistable region using a combination of direct simulation and bifurcation theory. We find that it has a bound where the stable epidemic limit cycle annihilates with an unstable limit cycle in a non-local bifurcation. Secondly, we extend the bifurcation-analysis to narrower immune time distributions than previous studies. Here, we find new levels of complexity in the bifurcation diagram, including the possibility for at least two different epidemic limit cycles at the same disease parameters. Overall our study highlights that a given disease may have multiple epidemic signatures, dependent on how it is introduced.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.O. Kermack, A.G. McKendrick, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1927), Vol. 115, pp. 700–721

  2. R.M. Anderson, R.M. May, B. Anderson, in Infectious diseases of humans: dynamics and control (Wiley Online Library, 1992), Vol. 28

  3. H.W. Hethcote, SIAM Rev. 42, 599 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Korobeinikov, G.C. Wake, Appl. Math. Lett. 15, 955 (2002)

    Article  MathSciNet  Google Scholar 

  5. K.L. Cooke, J.L. Kaplan, Math. Biosci. 31, 87 (1976)

    Article  MathSciNet  Google Scholar 

  6. H.W. Hethcote, Bull. Math. Biol. 35, 607 (1973)

    Article  Google Scholar 

  7. R. Xu, Z. Ma, Chaos, Solitons Fract. 41, 2319 (2009)

    Article  ADS  Google Scholar 

  8. A.S. Klovdahl, Soc. Sci. Med. 21, 1203 (1985)

    Article  Google Scholar 

  9. S. Eubank, H. Guclu, V.A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai, N. Wang, Nature 429, 180 (2004)

    Article  ADS  Google Scholar 

  10. M.E. Newman, Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. V. Colizza, A. Barrat, M. Barthélemy, A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 2015 (2006)

    Article  ADS  Google Scholar 

  12. S. Risau-Gusman, G. Abramson, Eur. Phys. J. B 60, 515 (2007)

    Article  ADS  Google Scholar 

  13. J.P. Aparicio, H.G. Solari, Math. Biosci. 169, 15 (2001)

    Article  MathSciNet  Google Scholar 

  14. H.W. Hethcote, M.A. Lewis, P. Van Den Driessche, J. Math. Biol. 27, 49 (1989)

    Article  MathSciNet  Google Scholar 

  15. T. Zhang, Z. Teng, Nonlinear Anal. Real World Appl. 9, 1409 (2008)

    Article  MathSciNet  Google Scholar 

  16. L. Wen, X. Yang, Chaos Solitons Fract. 38, 221 (2008)

    Article  ADS  Google Scholar 

  17. T. Zhang, J. Liu, Z. Teng, Appl. Math. Comput. 214, 624 (2009)

    MathSciNet  Google Scholar 

  18. Y. Enatsu, Y. Nakata, Y. Muroya, Acta Math. Sci. 32, 851 (2012)

    Article  Google Scholar 

  19. H.W. Hethcote, H.W. Stech, P. Van Den Driessche, SIAM J. Appl. Math. 40, 1 (1981)

    Article  MathSciNet  Google Scholar 

  20. S. Gonçalves, G. Abramson, M.F. Gomes, Eur. Phys. J. B 81, 363 (2011)

    Article  ADS  Google Scholar 

  21. K.L. Cooke, P. Van Den Driessche, J. Math. Biol. 35, 240 (1996)

    Article  MathSciNet  Google Scholar 

  22. D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)

    Article  Google Scholar 

  23. H.W. Hethcote, Math. Biosci. 28, 335 (1976)

    Article  MathSciNet  Google Scholar 

  24. H. Stech, M. Williams, J. Math. Biol. 11, 95 (1981)

    Article  MathSciNet  Google Scholar 

  25. F. Rozenblit, M. Copelli, J. Stat. Mech. Theory Exp. 2011, P01012 (2011)

    Article  Google Scholar 

  26. G. Abramson, S. Gonçalves, M.F. Gomes, arXiv:1303.3779 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorm Gruner Jensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, G.G., Uekermann, F. & Sneppen, K. Multi stability and global bifurcations in epidemic model with distributed delay SIRnS-model. Eur. Phys. J. B 92, 28 (2019). https://doi.org/10.1140/epjb/e2018-90562-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90562-1

Keywords

Navigation