Skip to main content
Log in

Nickel oxide/cobalt phthalocyanine nanocomposite for potential electronics applications

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of cobalt phthalocyanine on the dielectric behaviour and ac conductivity of nickel oxide nanoparticles is reported in this study. Solvent evaporation method is employed for the synthesis of nickel oxide/cobalt phthalocyanine (NiO–CoPc) nanocomposite. The structure and morphology of the synthesized nanocomposites are analysed using XRD and TEM. Dielectric properties and ac conductivity of NiO/CoPc sample is estimated as a function of frequency at different temperatures. The study reveals that the dispersion is due to interfacial polarization of Maxwell–Wagner type. The loss tangent in the low frequency region can be considerably reduced with the incorporation of CoPc. The presence of two semicircular arcs in the Cole–Cole plot points out the existence of grain and grain boundary conduction in the nanocomposite sample. High permittivity together with good thermal stability makes NiO/CoPc nanocomposite a potential candidate for applications in molecular electronics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  2. B.V. Prasad, G. Narsinga Rao, J.W. Chen, D. Suresh Babu, Mater. Res. Bull. 46, 1670 (2011)

    Article  Google Scholar 

  3. S. Saravanan, C. Joseph Mathai, M.R. Anantharaman, S. Venkatachalam, P.V. Prabhakaran, J. Appl. Polym. Sci. 91, 2529 (2004)

    Article  Google Scholar 

  4. T.D. Anthopoulos, T.S. Shafai, Appl. Phys. Lett. 82, 1628 (2003)

    Article  ADS  Google Scholar 

  5. M. Kaneko, T. Taneda, T. Tsukagawa, H. Kajii, Y. Ohmori, Jpn. J. Appl. Phys. 42, 2523 (2003)

    Article  ADS  Google Scholar 

  6. V. Biju, M.A. Khadar, Mater. Res. Bull. 36, 21 (2001)

    Article  Google Scholar 

  7. P.A. Sheena, K.P. Priyanka, N. Aloysius Sabu , B. Sabu, T. Varghese, Nanosystems 5, 441 (2014)

    Google Scholar 

  8. A. Dias, R. LuizMoreive, J. Mater. Res. 12, 2190 (1998)

    Article  ADS  Google Scholar 

  9. H.S. Soliman, A.M.A. El-Barry, N.M. Khosifan, M.M. El Nahass, Eur. Phys. J. Appl. Phys. 37, 1 (2007)

    Article  ADS  Google Scholar 

  10. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1956)

  11. K.V. Rao, A. Smakula, J. Appl. Phys. 36, 2031 (1965)

    Article  ADS  Google Scholar 

  12. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  13. K.W. Wagner, Am. Phys. 40, 317 (1973)

    Google Scholar 

  14. P. Lunkenheimer, A. Loidl, C.R. Ottermann, K. Bange, Phys. Rev. B. 44, 5927 (1991)

    Article  ADS  Google Scholar 

  15. D.P Snowden, H. Saltzburg, Phys. Rev. Lett. 14, 497 (1965)

    Article  ADS  Google Scholar 

  16. R. Parker, D. Elewell, J. Appl. Phys. 17, 1269 (1966)

    Google Scholar 

  17. K.K. Babitha, K.P. Priyanka, H. Hitha, S. Rintu Mary, E.M. Mohammed, S. Sankararaman, T. Varghese, J. Electron. Mater. 46, 6234 (2017)

    Article  ADS  Google Scholar 

  18. P. Mario Lanza Materials 7, 2155 (2014)

    Article  ADS  Google Scholar 

  19. K.P. Priyanka, J. Sunny, T. Smitha, E.M. Mohammed, T. Varghese, J. Basic Appl. Phys. 2, 105 (2010)

    Google Scholar 

  20. S.K. Aniban, A. Dutta, RSC Adv. 5, 95736 (2015)

    Article  Google Scholar 

  21. J. Xu, C.P. Wong, Compos. Part A Appl. Sci. Manuf. 38, 13 (2007)

    Article  Google Scholar 

  22. A.K. Thomas, K. Abraham, J. Thomas, K.V. Saban, J. Am. Ceram. Soc 5 (2017)

  23. L.D. Sappia, M.R. Trujillo, I. Lorite, R.E. Madrid, M. Tirado, D. Comedi, P. Esquinazi, Mater. Sci. Eng. B. 200, 124 (2015)

    Article  Google Scholar 

  24. V. Varade, G.V. Honnavar, P. Anjaneyulu, K.P. Ramesh, R. Menon, J. Phys. D Appl. Phys. 46, 365306 (2013)

    Article  Google Scholar 

  25. M.R. Biswal, J. Nanda, N.C. Mishra, S. Anwar, A. Mishra, Adv. Mater. Lett. 5, 513 (2014)

    Article  Google Scholar 

  26. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varghese Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheena, P.A.L., Sreedevi, A., Viji, C. et al. Nickel oxide/cobalt phthalocyanine nanocomposite for potential electronics applications. Eur. Phys. J. B 92, 13 (2019). https://doi.org/10.1140/epjb/e2018-90280-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90280-8

Keywords

Navigation